Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(20): 7818-7827, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37172312

RESUMEN

Contamination of the environment by pesticide residues is a growing concern given their widespread presence in the environment and their effects on ecosystems. Only a few studies have addressed the occurrence of pesticides in soils, and their results highlighted the need for further research on the persistence and risks induced by those substances. We monitored 111 pesticide residues (48 fungicides, 36 herbicides, 25 insecticides and/or acaricides, and two safeners) in 47 soils sampled across France under various land uses (arable lands, vineyards, orchards, forests, grasslands, and brownfields). Pesticides were found in 98% of the sites (46 of the 47 sampled), including untreated areas such as organic fields, forests, grasslands, and brownfields, with up to 33 different substances detected in one sample, mostly fungicides and herbicides. The concentrations of herbicides were the highest in soils with glyphosate, and its transformation product, AMPA, contributed 70% of the cumulative herbicides. Risk assessment underlined a moderate to high risk for earthworms in arable soils mostly attributed to insecticides and/or acaricides. Finally, the comparison with pesticide application by farmers underlines the presence of some residues long after their supposed 90% degradation and at concentrations higher than predicted environmental concentrations, leading to questions their real persistence in soils.


Asunto(s)
Acaricidas , Fungicidas Industriales , Herbicidas , Insecticidas , Residuos de Plaguicidas , Plaguicidas , Contaminantes del Suelo , Residuos de Plaguicidas/análisis , Suelo/química , Agricultura , Fungicidas Industriales/análisis , Ecosistema , Monitoreo del Ambiente , Plaguicidas/análisis
2.
Metabolites ; 10(5)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456338

RESUMEN

Cyanobacteria are known to produce a large diversity of specialized metabolites that can cause severe (eco)toxicological effects. In the lagoon of Tahiti, the benthic cyanobacterium Leibleinia gracilis is commonly found overgrowing the proliferative macroalga Turbinaria ornata or dead branching corals. The specialized metabolome of the cyanobacterium L. gracilis was therefore investigated together with its variability on both substrates and changes in environmental parameters. For the study of the metabolome variability, replicates of L. gracilis were collected in the same location of the lagoon of Tahiti before and after a raining event, both on dead corals and on T. ornata. The variability in the metabolome was inferred from a comparative non-targeted metabolomic using high resolution mass spectrometry (MS) data and a molecular network analysis built through MS/MS analyses. Oxidized fatty acid derivatives including the unusual 11-oxopalmitelaidic acid were found as major constituents of the specialized metabolome of this species. Significant variations in the metabolome of the cyanobacteria were observed, being more important with a change in environmental factors. Erucamide was found to be the main chemical marker highly present when the cyanobacterium grows on the macroalga. This study highlights the importance of combined approaches in metabolomics and molecular networks to inspect the variability in the metabolome of cyanobacteria with applications for ecological questions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...