Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 870: 161000, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36690095

RESUMEN

Stakeholders involved in actions to reduce the use and the impacts on the environment or human health of pesticides need operational tools to assess crop protection strategies in regard to these impacts. I-Phy3 brings together all improvements introduced since the first version of the indicator to better meet user's needs and requirements of integrating processes. I-Phy3 was deeply modified to ensure its predictive quality. I-Phy 3 is structured in three levels of aggregation in form of hierarchical fuzzy decision trees designed with the CONTRA method. At the 1st level, five basic subindicators assess the risk of contamination (RC) for the different transfer pathways involved in surface water, ground water and atmosphere contamination: leaching, runoff, drainage, drift, volatilization. At the 2nd level, RC subindicators are aggregated with a toxicity variable (human or aquatic) in a risk indicator. At the 3rd level, the global indicator I-Phy3 results from the aggregation of three risk indicators for groundwater, surface waters and air. I-Phy3 yielded better validation results than its previous versions. This effort to assess the predictive quality of the indicator should be pursued and completed by a feasibility and utility test by end-users. A subindicator on risk of soil contamination is a gap which remains to fill.

2.
J Hazard Mater ; 415: 125613, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088172

RESUMEN

Following treatment, amounts of pesticides can reach the atmosphere because of spray drift, volatilization from soil or plants, and/or wind erosion. Monitoring and risk assessment of air contamination by pesticides is a recent issue and more insights on pesticide transfer to atmosphere are needed. Thus, the objective of this work was to better understand and assess pesticides emission potential to air through volatilization. The TyPol tool was used to explore the relationships between the global, soil and plant volatilization potentials of 178 pesticides, and their molecular properties. The outputs of TyPol were then compared to atmospheric pesticide concentrations monitored in various French regions. TyPol was able to discriminate pesticides that were observed in air from those that were not. Clustering considering parameters driving the emission potential from soil (sorption characteristics) or plant (lipophilic properties), in addition to vapor pressure, allowed better discrimination of the pesticides than clustering considering all parameters for the global emission potential. Pesticides with high volatilization potential have high total energy, and low molecular weight, molecular connectivity indices and polarizability. TyPol helped better understand the volatilization potential of pesticides. It can be used as a first step to assess the risk of air contamination by pesticides.

3.
Sci Total Environ ; 605-606: 655-665, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28675875

RESUMEN

Stakeholders need operational tools to assess crop protection strategies in regard to environmental impact. The need to assess and report on the impacts of pesticide use on the environment has led to the development of numerous indicators. However, only a few studies have addressed the predictive quality of these indicators. This is mainly due to the limited number of datasets adapted to the comparison of indicator outputs with pesticide measurement. To our knowledge, evaluation of the predictive quality of pesticide indicators in comparison to the quality of water as presented in this article is unprecedented in terms of the number of tested indicators (26 indicators and the MACRO model) and in terms of the size of datasets used (data collected for 4 transfer pathways, 20 active ingredients (a.i.) for a total of 1040 comparison points). Results obtained on a.i. measurements were compared to the indicator outputs, measured by: (i) correlation tests to identify linear relationship, (ii) probability tests comparing measurements with indicator outputs, both classified in 5 classes, and assessing the probability i.e. the percentage of correct estimation and overestimation (iii) by ROC tests estimating the predictive ability against a given threshold. Results showed that the correlation between indicator outputs and the observed transfers are low (r<0.58). Overall, more complex indicators taking into account the soil, the climatic and the environmental aspects yielded comparatively better results. The numerical simulation model MACRO showed much better results than those for indicators. These results will be used to help stakeholders to appropriately select their indicators, and will provide them with advice for possible use and limits in the interpretation of indicator outputs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...