Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 12(8): 2149-2164, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38487997

RESUMEN

The sole effective treatment for most patients with heart valve disease is valve replacement by implantation of mechanical or biological prostheses. However, mechanical valves represent high risk of thromboembolism, and biological prostheses are prone to early degeneration. In this work, we aim to determine the potential of novel environmentally-friendly non-isocyanate polyurethanes (NIPUs) for manufacturing synthetic prosthetic heart valves. Polyhydroxyurethane (PHU) NIPUs are synthesized via an isocyanate-free route, tested in vitro, and used to produce aortic valves. PHU elastomers reinforced with a polyester mesh show mechanical properties similar to native valve leaflets. These NIPUs do not cause hemolysis. Interestingly, both platelet adhesion and contact activation-induced coagulation are strongly reduced on NIPU surfaces, indicating low thrombogenicity. Fibroblasts and endothelial cells maintain normal growth and shape after indirect contact with NIPUs. Fluid-structure interaction (FSI) allows modeling of the ideal valve design, with minimal shear stress on the leaflets. Injection-molded valves are tested in a pulse duplicator and show ISO-compliant hydrodynamic performance, comparable to clinically-used bioprostheses. Poly(tetrahydrofuran) (PTHF)-NIPU patches do not show any evidence of calcification over a period of 8 weeks. NIPUs are promising sustainable biomaterials for the manufacturing of improved prosthetic valves with low thrombogenicity.


Asunto(s)
Prótesis Valvulares Cardíacas , Poliuretanos , Humanos , Poliuretanos/química , Isocianatos , Células Endoteliales , Válvula Aórtica/cirugía
2.
Biomacromolecules ; 25(3): 1810-1824, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38360581

RESUMEN

Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.


Asunto(s)
Elastómeros , Poliuretanos , Humanos , Poliuretanos/farmacología , Poliuretanos/química , Elastómeros/química , Isocianatos/química , Prótesis e Implantes , Supuración
3.
Biomacromolecules ; 24(10): 4375-4384, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36113039

RESUMEN

In this work, isocyanate-free formulations for poly(propylene glycol) polyurethane elastomers are studied. These formulations are based on poly(propylene glycol) end-capped by CO2-sourced cyclic carbonate (bisCC PPG) macromonomers able to react with amines leading to poly(hydroxyurethane)s. In order to obtain covalent networks, two curing approaches are studied. First, the direct thermally activated cross-linking of bisCC PPG with a mixture of various aliphatic or aromatic diamines and a triamine is investigated, and in particular the nature of the diamine on the mechanical properties. In the second approach, UV-activated formulations are developed by reacting bisCC PPG with allylamine followed by the addition of a trithiol by photoactivated thiol-ene reaction. The swelling tests show that both systems provide highly cross-linked polymer networks and complementary characterizations highlighted excellent mechanical properties. Thanks to the fast curing and adapted viscosity of the developed photoactive formulation, the latter was found suitable for use as a photoresin for 3D printing as demonstrated by printing a vaginal ring by a nozzle-based photoprinter.


Asunto(s)
Elastómeros , Propilenglicol , Polímeros , Poliuretanos , Isocianatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...