Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 110(2-1): 024136, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39294942

RESUMEN

We aim to identify the spatial distribution of vegetation and its growth dynamics with the purpose of obtaining a qualitative assessment of vegetation characteristics tied to its condition, productivity and health, and to land degradation. To do so, we compare a statistical model of vegetation growth and land surface imagery derived vegetation indices. Specifically, we analyze a stochastic cellular automata model and data obtained from satellite images, namely using the normalized difference vegetation index and the leaf area index. In the experimental data, we look for areas where vegetation is broken into small patches and qualitatively compare it to the percolating, fragmented, and degraded states that appear in the cellular automata model. We model the periodic effect of seasons, finding numerical evidence of a periodic fragmentation and recovery phenomenology if the model parameters are sufficiently close to the model's percolation transition. We qualitatively recognize these effects in real-world vegetation images and consider them a signal of increased environmental stress and vulnerability. Finally, we show an estimation of the environmental stress in land images by considering both the vegetation density and its clusterization.

2.
Phys Rev Lett ; 129(2): 020601, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867451

RESUMEN

Recent experimental observation of weak ergodicity breaking in Rydberg atom quantum simulators has sparked interest in quantum many-body scars-eigenstates which evade thermalization at finite energy densities due to novel mechanisms that do not rely on integrability or protection by a global symmetry. A salient feature of some quantum many-body scars is their subvolume bipartite entanglement entropy. In this Letter, we demonstrate that such exact many-body scars also possess extensive multipartite entanglement structure if they stem from an su(2) spectrum generating algebra. We show this analytically, through scaling of the quantum Fisher information, which is found to be superextensive for exact scarred eigenstates in contrast to generic thermal states. Furthermore, we numerically study signatures of multipartite entanglement in the PXP model of Rydberg atoms, showing that extensive quantum Fisher information density can be generated dynamically by performing a global quench experiment. Our results identify a rich multipartite correlation structure of scarred states with significant potential as a resource in quantum enhanced metrology.

3.
Phys Rev E ; 97(6-1): 062157, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011609

RESUMEN

We propose a class of mean-field models for the isostatic transition of systems of soft spheres, in which the contact network is modeled as a random graph and each contact is associated to d degrees of freedom. We study such models in the hypostatic, isostatic, and hyperstatic regimes. The density of states is evaluated by both the cavity method and exact diagonalization of the dynamical matrix. We show that the model correctly reproduces the main features of the density of states of real packings and, moreover, it predicts the presence of localized modes near the lower band edge. Finally, the behavior of the density of states D(ω)∼ω^{α} for ω→0 in the hyperstatic regime is studied. We find that the model predicts a nontrivial dependence of α on the details of the coordination distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA