Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 11(10)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626746

RESUMEN

Recently, we have shown that the physiological roles of a multifunctional protein fructose 1,6-bisphosphatase 2 (FBP2, also called muscle FBP) depend on the oligomeric state of the protein. Here, we present several lines of evidence that in HL-1 cardiomyocytes, a forced, chemically induced reduction in the FBP2 dimer-tetramer ratio that imitates AMP and NAD+ action and restricts FBP2-mitochondria interaction, results in an increase in Tau phosphorylation, augmentation of FBP2-Tau and FBP2-MAP1B interactions, disturbance of tubulin network, marked reduction in the speed of mitochondrial trafficking and increase in mitophagy. These results not only highlight the significance of oligomerization for the regulation of FBP2 physiological role in the cell, but they also demonstrate a novel, important cellular function of this multitasking protein-a function that might be crucial for processes that take place during physiological and pathological cardiac remodeling, and during the onset of diseases which are rooted in the destabilization of MT and/or mitochondrial network dynamics.


Asunto(s)
Mitocondrias , Miocitos Cardíacos , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitofagia , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo
2.
Cells ; 10(8)2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34440861

RESUMEN

Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3-cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.


Asunto(s)
Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Actinas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Movimiento Celular , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA