Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 54(2): 949-964, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36857007

RESUMEN

Mercury is a non-essential and toxic metal that induces toxicity in most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to metal contaminants and other environmental stressors. The present study demonstrated the potential of mercury-resistant endophytic fungi in phytoremediation. We examined the functional traits involved in plant growth promotion, phytotoxicity mitigation, and mercury phytoremediation in seven fungi strains. The endophytic isolates synthesized the phytohormone indole-3-acetic acid, secreted siderophores, and solubilized phosphate in vitro. Inoculation of maize (Zea mays) plants with endophytes increased plant growth attributes by up to 76.25%. The endophytic fungi stimulated mercury uptake from the substrate and promoted its accumulation in plant tissues (t test, p < 0.05), preferentially in the roots, which thereby mitigated the impacts of metal phytotoxicity. Westerdykella aquatica P71 and the newly identified species Pseudomonodictys pantanalensis nov. A73 were the isolates that presented the best phytoremediation potential. Assembling and annotation of P. pantanalensis A73 and W. aquatica P71 genomes resulted in genome sizes of 45.7 and 31.8 Mb that encoded 17,774 and 11,240 protein-coding genes, respectively. Some clusters of genes detected were involved in the synthesis of secondary metabolites such as dimethylcoprogen (NRPS) and melanin (T1PKS), which are metal chelators with antioxidant activity; mercury resistance (merA and merR1); oxidative stress (PRX1 and TRX1); and plant growth promotion (trpS and iscU). Therefore, both fungi species are potential tools for the bioremediation of mercury-contaminated soils due to their ability to reduce phytotoxicity and assist phytoremediation.


Asunto(s)
Ascomicetos , Mercurio , Contaminantes del Suelo , Mercurio/metabolismo , Biodegradación Ambiental , Ascomicetos/metabolismo , Endófitos , Reguladores del Crecimiento de las Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología
2.
Arch Microbiol ; 203(9): 5345-5361, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34387704

RESUMEN

Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.


Asunto(s)
Mercurio , Oryza , Aspergillus/genética , Curvularia , Endófitos , Mercurio/toxicidad , Filogenia , Raíces de Plantas
3.
Ecotoxicol Environ Saf ; 202: 110818, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32590206

RESUMEN

The quantification, efficiency, and possible mechanisms of mercury phytoremediation by endophytic bacteria are poorly understood. Here we selected 8 out of 34 previously isolated endophytic bacterial strains with a broad resistance profile to metals and 11 antibiotics: Acinetobacter baumannii BacI43, Bacillus sp. BacI34, Enterobacter sp. BacI14, Klebsiella pneumoniae BacI20, Pantoea sp. BacI23, Pseudomonas sp. BacI7, Pseudomonas sp. BacI38, and Serratia marcescens BacI56. Except for Klebsiella pneumoniae BacI20, the other seven bacterial strains promoted maize growth on a mercury-contaminated substrate. Acinetobacter baumannii BacI43 and Bacillus sp. BacI34 increased total dry biomass by approximately 47%. The bacteria assisted mercury remediation by decreasing the metal amount in the substrate, possibly by promoting its volatilization. The plants inoculated with Serratia marcescens BacI56 and Pseudomonas sp. BacI38 increased mercury volatilization to 47.16% and 62.42%, respectively. Except for Bacillus sp. BacI34 and Pantoea sp. BacI23, the other six bacterial strains favored mercury bioaccumulation in plant tissues. Endophytic bacteria-assisted phytoremediation contributed to reduce the substrate toxicity assessed in different model organisms. The endophytic bacterial strains selected herein are potential candidates for assisted phytoremediation that shall help reduce environmental toxicity of mercury-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Mercurio/análisis , Contaminantes del Suelo/análisis , Bacillus , Bioacumulación , Enterobacter , Plantas , Pseudomonas , Volatilización
4.
Chemosphere ; 240: 124874, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31546184

RESUMEN

The present study proposes the use of endophytic fungi for mercury bioremediation in in vitro and host-associated systems. We examined mercury resistance in 32 strains of endophytic fungi grown in culture medium supplemented with toxic metal concentrations. The residual mercury concentrations were quantified after mycelial growth. Aspergillus sp. A31, Curvularia geniculata P1, Lindgomycetaceae P87, and Westerdykella sp. P71 were selected and further tested for mercury bioremediation and bioaccumulation in vitro, as well as for growth promotion of Aeschynomene fluminensis and Zea mays in the presence or absence of the metal. Aspergillus sp. A31, C. geniculata P1, Lindgomycetaceae P87 and Westerdykella sp. P71 removed up to 100% of mercury from the culture medium in a species-dependent manner and they promoted A. fluminensis and Z. mays growth in substrates containing mercury or not (Dunnett's test, p < 0.05). Lindgomycetaceae P87 and C. geniculata P1 are dark septate endophytic fungi that endophytically colonize root cells of their host plants. The increase of host biomass correlated with the reduction of soil mercury concentration due to the metal bioaccumulation in host tissues and its possible volatilization. The soil mercury concentration was decreased by 7.69% and 57.14% in A. fluminensis plants inoculated with Lindgomycetaceae P87 + Aspergillus sp. A31 and Lindgomycetaceae P87, respectively (Dunnet's test, p < 0.05). The resistance mechanisms of mercury volatilization and bioaccumulation in plant tissues mediated by these endophytic fungi can contribute to bioremediation programs. The biochemical and genetic mechanisms involved in bioaccumulation and volatilization need to be elucidated in the future.


Asunto(s)
Biodegradación Ambiental , Hongos/química , Mercurio/química
5.
Genome Announc ; 6(15)2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650581

RESUMEN

Here, we report the draft genome sequence of the Acinetobacter baumannii strain I43, which is highly resistant to mercury. The Illumina-based sequence analysis revealed a genome of approximately 4,520,353 bp composed of 4,091 coding sequences.

6.
PLoS One ; 12(7): e0182017, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28742846

RESUMEN

The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.


Asunto(s)
Endófitos/efectos de los fármacos , Fabaceae/microbiología , Mercurio/efectos adversos , Polygonum/microbiología , Microbiología del Suelo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...