Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298374

RESUMEN

Prostate specific membrane antigen (PSMA) is an excellent target for imaging and treatment of prostate carcinoma (PCa). Unfortunately, not all PCa cells express PSMA. Therefore, alternative theranostic targets are required. The membrane protein prostate stem cell antigen (PSCA) is highly overexpressed in most primary prostate carcinoma (PCa) cells and in metastatic and hormone refractory tumor cells. Moreover, PSCA expression positively correlates with tumor progression. Therefore, it represents a potential alternative theranostic target suitable for imaging and/or radioimmunotherapy. In order to support this working hypothesis, we conjugated our previously described anti-PSCA monoclonal antibody (mAb) 7F5 with the bifunctional chelator CHX-A″-DTPA and subsequently radiolabeled it with the theranostic radionuclide 177Lu. The resulting radiolabeled mAb ([177Lu]Lu-CHX-A″-DTPA-7F5) was characterized both in vitro and in vivo. It showed a high radiochemical purity (>95%) and stability. The labelling did not affect its binding capability. Biodistribution studies showed a high specific tumor uptake compared to most non-targeted tissues in mice bearing PSCA-positive tumors. Accordingly, SPECT/CT images revealed a high tumor-to-background ratios from 16 h to 7 days after administration of [177Lu]Lu-CHX-A″-DTPA-7F5. Consequently, [177Lu]Lu-CHX-A″-DTPA-7F5 represents a promising candidate for imaging and in the future also for radioimmunotherapy.


Asunto(s)
Carcinoma , Ácido Pentético , Animales , Ratones , Masculino , Ácido Pentético/química , Distribución Tisular , Próstata , Línea Celular Tumoral , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química , Células Madre , Carcinoma/tratamiento farmacológico , Lutecio/química
2.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37259458

RESUMEN

Theranostic matched pairs of radionuclides have aroused interest during the last couple of years, and in that sense, copper is one element that has a lot to offer, and although 61Cu and 64Cu are slowly being established as diagnostic radionuclides for PET, the availability of the therapeutic counterpart 67Cu plays a key role for further radiopharmaceutical development in the future. Until now, the 67Cu shortage has not been solved; however, different production routes are being explored. This project aims at the production of no-carrier-added 67Cu with high radionuclidic purity with a medical 30MeV compact cyclotron via the 70Zn(p,α)67Cu reaction. With this purpose, proton irradiation of electrodeposited 70Zn targets was performed followed by two-step radiochemical separation based on solid-phase extraction. Activities of up to 600MBq 67Cu at end of bombardment, with radionuclidic purities over 99.5% and apparent molar activities of up to 80MBq/nmol, were quantified.

3.
Dalton Trans ; 52(10): 3024-3032, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36779384

RESUMEN

Click chemistry, in particular copper-free click reactions, has gained growing interest for radiolabelling purposes in the field of radiopharmaceutical sciences. [99mTc][Tc(CO)3(H2O)3]+ works as an excellent starting complex for the radiolabelling of biomolecules under mild conditions. A new chelator, investigated for the copper-free strain-promoted cycloaddition (SPAAC), was synthesised containing the 2,2'-dipicolylamine (DPA) moiety for the 99mTc-tricarbonyl core and compared with a DPA chelator based on activated esters for conventional radiolabelling. For the copper-free click labelling procedure, a DPA containing 4,8-diazacyclononyne moiety was prepared from a sulfonyl-modified diamide (four steps, 64% yield) followed by the Nicholas reaction with butyne-1,3-diol. The 99mTc-DPA-DACN-complex was prepared with a radiochemical conversion (RCC) of 89% after 30 min. The following SPAAC reaction with an azide-functionalised PSMA molecule was performed within 4-5 hours at 100 °C to obtain the PSMA (prostate-specific membrane antigen) targeting 99mTc-complex with 79% RCC and without side products. For comparison, a second DPA-chelator based on a tetrafluorophenyl (TFP) ester was prepared (three steps, 64% yield) and was successfully radiolabelled with [[99mTc]Tc(CO)3(H2O)3]+ with 89% RCC after 20 min and >99% radiochemical purity after separation using an RP18 cartridge. The subsequent conjugation of an amine-functionalised PSMA targeting molecule was performed with 23% RCC after 150 min. Two other unknown side products were observed indicating the decomposition of the TFP ester during the labelling. All nonradioactive Re(CO)3 complexes were synthesised from (Et4N)2[ReBr3(CO)3] (91% yield for the natRe-DPA-TFP ester, 76% yield for natRe-DPA-DACN) and characterised to confirm the identity of the 99mTc-complexes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Tecnecio , Humanos , Quelantes/química , Compuestos de Organotecnecio/química , Radiofármacos/química , Tecnecio/química
4.
J Med Chem ; 66(1): 516-537, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36595224

RESUMEN

The applicability of radioligands for targeted endoradionuclide therapy is limited due to radiation-induced toxicity to healthy tissues, in particular to the kidneys as primary organs of elimination. The targeting of enzymes of the renal brush border membrane by cleavable linkers that permit the formation of fast eliminating radionuclide-carrying cleavage fragments gains increasing interest. Herein, we synthesized a small library of 64Cu-labeled cleavable linkers and quantified their substrate potentials toward neprilysin (NEP), a highly abundant peptidase at the renal brush border membrane. This allowed for the derivation of structure-activity relationships, and selected cleavable linkers were attached to the somatostatin receptor subtype 2 ligand [Tyr3]octreotate. Radiopharmacological characterization revealed that a substrate-based targeting of NEP in the kidneys with small peptides entails their premature cleavage in the blood circulation by soluble and endothelium-derived NEP. However, for a kidney-specific targeting of NEP, the additional targeting of albumin in the blood is highlighted.


Asunto(s)
Neprilisina , Radiofármacos , Riñón , Péptidos , Microvellosidades
5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675164

RESUMEN

In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.


Asunto(s)
Conformación Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Conformación Molecular , Proteína Glutamina Gamma Glutamiltransferasa 2/química , Transglutaminasas/metabolismo
6.
Theranostics ; 12(17): 7203-7215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438496

RESUMEN

Rationale: Small 225Ac-labeled prostate-specific membrane antigen (PSMA)-targeted radioconjugates have been described for targeted alpha therapy of metastatic castration-resistant prostate cancer. Transient binding to serum albumin as a highly abundant, inherent transport protein represents a commonly applied strategy to modulate the tissue distribution profile of such low-molecular-weight radiotherapeutics and to enhance radioactivity uptake into tumor lesions with the ultimate objective of improved therapeutic outcome. Methods: Two ligands mcp-M-alb-PSMA and mcp-D-alb-PSMA were synthesized by combining a macropa-derived chelator with either one or two lysine-ureido-glutamate-based PSMA- and 4-(p-iodophenyl)butyrate albumin-binding entities using multistep peptide-coupling chemistry. Both compounds were labeled with [225Ac]Ac3+ under mild conditions and their reversible binding to serum albumin was analyzed by an ultrafiltration assay as well as microscale thermophoresis measurements. Saturation binding studies and clonogenic survival assays using PSMA-expressing LNCaP cells were performed to evaluate PSMA-mediated cell binding and to assess the cytotoxic potency of the novel radioconjugates [225Ac]Ac-mcp-M-alb-PSMA and [225Ac]Ac-mcp-D-alb-PSMA, respectively. Biodistributions of both 225Ac-radioconjugates were investigated using LNCaP tumor-bearing SCID mice. Histological examinations of selected organs were performed to analyze the occurrence of necrosis using H&E staining, DNA damage via γH2AX staining and proliferation via Ki67 expression in the tissue samples. Results: Enhanced binding to serum components in general and to human serum albumin in particular was revealed for [225Ac]Ac-mcp-M-alb-PSMA and [225Ac]Ac-mcp-D-alb-PSMA, respectively. Moreover, the novel derivatives are highly potent PSMA ligands as their KD values in the nanomolar range (23.38 and 11.56 nM) are comparable to the reference radioconjugates [225Ac]Ac-mcp-M-PSMA (30.83 nM) and [225Ac]Ac-mcp-D-PSMA (10.20 nM) without albumin binders. The clonogenic activity of LNCaP cells after treatment with the 225Ac-labeled ligands was affected in a dose- and time-dependent manner, whereas the bivalent radioconjugate [225Ac]Ac-mcp-D-alb-PSMA has a stronger impact on the clonogenic cell survival than its monovalent counterpart [225Ac]Ac-mcp-M-alb-PSMA. Biodistribution studies performed in LNCaP tumor xenografts showed prolonged blood circulation times for both albumin-binding radioconjugates and a substantially increased tumor uptake (46.04 ± 7.77 %ID/g for [225Ac]Ac-mcp-M-alb-PSMA at 128 h p.i. and 153.48 ± 37.76 %ID/g at 168 h p.i. for [225Ac]Ac-mcp-D-alb-PSMA) with favorable tumor-to-background ratios. Consequently, a clear histological indication of DNA damage was discovered in the tumor tissues, whereas DNA double-strand break formation in kidney and liver sections was less pronounced. Conclusion: The modification of the PSMA-based 225Ac-radioconjugates with one or two albumin-binding entities resulted in an improved radiopharmacological behavior including a greatly enhanced tumor accumulation combined with a rather low uptake in most non-targeted organs combined with a high excretion via the kidneys.


Asunto(s)
Radiofármacos , Albúmina Sérica , Animales , Masculino , Ratones , Humanos , Distribución Tisular , Línea Celular Tumoral , Ratones SCID , Radiofármacos/farmacocinética , Ligandos
7.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297279

RESUMEN

Targeted Alpha Therapy is a research field of highest interest in specialized radionuclide therapy. Over the last decades, several alpha-emitting radionuclides have entered and left research topics towards their clinical translation. Especially, 225Ac provides all necessary physical and chemical properties for a successful clinical application, which has already been shown by [225Ac]Ac-PSMA-617. While PSMA-617 carries the DOTA moiety as the complexing agent, the chelator macropa as a macrocyclic alternative provides even more beneficial properties regarding labeling and complex stability in vivo. Lanthanum-133 is an excellent positron-emitting diagnostic lanthanide to radiolabel macropa-functionalized therapeutics since 133La forms a perfectly matched theranostic pair of radionuclides with the therapeutic radionuclide 225Ac, which itself can optimally be complexed by macropa as well. 133La was thus produced by cyclotron-based proton irradiation of an enriched 134Ba target. The target (30 mg of [134Ba]BaCO3) was irradiated for 60 min at 22 MeV and 10−15 µA beam current. Irradiation side products in the raw target solution were identified and quantified: 135La (0.4%), 135mBa (0.03%), 133mBa (0.01%), and 133Ba (0.0004%). The subsequent workup and anion-exchange-based product purification process took approx. 30 min and led to a total amount of (1.2−1.8) GBq (decay-corrected to end of bombardment) of 133La, formulated as [133La]LaCl3. After the complete decay of 133La, a remainder of ca. 4 kBq of long-lived 133Ba per 100 MBq of 133La was detected and rated as uncritical regarding personal dose and waste management. Subsequent radiolabeling was successfully performed with previously published macropa-derived PSMA inhibitors at a micromolar range (quantitative labeling at 1 µM) and evaluated by radio-TLC and radio-HPLC analyses. The scale-up to radioactivity amounts that are needed for clinical application purposes would be easy to achieve by increasing target mass, beam current, and irradiation time to produce 133La of high radionuclide purity (>99.5%) regarding labeling properties and side products.

8.
Bioorg Med Chem ; 73: 117012, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155319

RESUMEN

Epidermal growth factor receptors (EGFR) of tyrosine kinase (TK) have shown high expression levels in most cancers and are considered a promising target for cancer diagnosis and therapy. Expanding the investigation for novel targeted radiopharmaceuticals, an EGFR inhibitor such as 4-aminoquinazoline derivatives along with a radionuclide such as technetium-99m (99mTc) could be ideal. Thus, we report herein the synthesis, characterization, and biological evaluation of new "4 + 1" mixed-ligand ReIII- and 99mTcIII-complexes of the general formula [99mTc][Tc(NS3)(CN-R)] bearing tris(2-mercaptoethyl)-amine (NS3) as the tetradentate tripodal ligand and a series of isocyanide derivatives (CN-R) of tyrosine kinase inhibitor (3-bromophenyl)quinazoline-4,6-diamine as the monodentate ligand. The quinazoline isocyanide derivatives 4a-d were prepared in two steps and reacted with the [Re(NS3)PMe2Ph] precursor leading to the final complexes 5a-d in high yield. All compounds were characterized by elemental analysis, IR, and NMR spectroscopies. In vitro studies, for their potency to inhibit the cell growth, using intact A431 cells indicate that the quinazoline derivatives 4a-d and the Re complexes 5a-d significantly inhibit the A431 cell growth. In addition, the EGFR autophosphorylation study of complex 5b shows an IC50 value in the nanomolar range. The corresponding "4 + 1" 99mTc-complexes 6a-d were prepared by employing the [99mTc]TcEDTA intermediate and the appropriate monodentate 4a-d in a two-step synthetic procedure with a radiochemical yield (RCY) from 63 to 77 % and a radiochemical purity (RCP) > 99 % after HPLC purification. Their structures have been established by HPLC comparative studies using the well-characterized Re-complexes 5a-d as reference. All 99mTc-complexes remain stable for at least 6 h, and their logD7.4 values confirmed their anticipated lipophilic character. Biodistribution studies in healthy Swiss albino mice of 99mTc-complexes showed hepatobiliary excretion and initial fast blood clearance. Complex 6b was also tested in Albino SCID mice bearing A431 tumors and showed rapid tumor uptake at 5 min (2.80 % ID/g) with a moderate tumor/muscle ratio (2.06) at 4 h p.i. The results encourage further investigation for this type of 99mTc-complexes as single-photon emission computed tomography (SPECT) radio agents for imaging tumors overexpressing EGFR.


Asunto(s)
Renio , Tecnecio , Aminas , Animales , Cianuros , Diaminas , Familia de Proteínas EGF/metabolismo , Receptores ErbB , Ligandos , Ratones , Inhibidores de Proteínas Quinasas , Quinazolinas/química , Quinazolinas/farmacología , Radioisótopos , Radiofármacos , Renio/química , Tecnecio/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
9.
Dalton Trans ; 51(24): 9541-9555, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670322

RESUMEN

Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 µmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.


Asunto(s)
Ciclamas , Organofosfonatos , Animales , Cobre , Radioisótopos de Cobre , Fluoruros , Compuestos Heterocíclicos , Ligandos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas
10.
J Med Chem ; 65(1): 710-733, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34939412

RESUMEN

The intentional binding of radioligands to albumin gains increasing attention in the context of radiopharmaceutical cancer therapy as it can lead to an enhanced radioactivity uptake into the tumor lesions and, thus, to a potentially improved therapeutic outcome. However, the influence of the radioligand's albumin-binding affinity on the time profile of tumor uptake has been only partly addressed so far. Based on the previously identified Nε-4-(4-iodophenyl)butanoyl-lysine scaffold, we designed "clickable" lysine-derived albumin binders (cLABs) and determined their dissociation constants toward albumin by novel assay methods. Structure-activity relationships were derived, and selected cLABs were applied for the modification of the somatostatin receptor subtype 2 ligand (Tyr3)octreotate. These novel conjugates were radiolabeled with copper-64 and subjected to a detailed in vitro and in vivo radiopharmacological characterization. Overall, the results of this study provide an incentive for further investigations of albumin binders for applications in endoradionuclide therapies.


Asunto(s)
Albúminas/metabolismo , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Animales , Radioisótopos de Cobre , Lisina/química , Ratones , Tomografía de Emisión de Positrones , Unión Proteica , Relación Estructura-Actividad , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancers (Basel) ; 13(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830750

RESUMEN

Combination treatment of molecular targeted and external radiotherapy is a promising strategy and was shown to improve local tumor control in a HNSCC xenograft model. To enhance the therapeutic value of this approach, this study investigated the underlying molecular response. Subcutaneous HNSCC FaDuDD xenografts were treated with single or combination therapy (X-ray: 0, 2, 4 Gy; anti-EGFR antibody (Cetuximab) (un-)labeled with Yttrium-90 (90Y)). Tumors were excised 24 h post respective treatment. Residual DNA double strand breaks (DSB), mRNA expression of DNA damage response related genes, immunoblotting, tumor histology, and immunohistological staining were analyzed. An increase in number and complexity of residual DNA DSB was observed in FaDuDD tumors exposed to the combination treatment of external irradiation and 90Y-Cetuximab relative to controls. The increase was observed in a low oxygenated area, suggesting the expansion of DNA DSB damages. Upregulation of genes encoding p21cip1/waf1 (CDKN1A) and GADD45α (GADD45A) was determined in the combination treatment group, and immunoblotting as well as immunohistochemistry confirmed the upregulation of p21cip1/waf1. The increase in residual γH2AX foci leads to the blockage of cell cycle transition and subsequently to cell death, which could be observed in the upregulation of p21cip1/waf1 expression and an elevated number of cleaved caspase-3 positive cells. Overall, a complex interplay between DNA damage repair and programmed cell death accounts for the potential benefit of the combination therapy using 90Y-Cetuximab and external radiotherapy.

13.
ChemMedChem ; 16(17): 2645-2649, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949125

RESUMEN

We show the synthesis of an in vivo stable mercury compound with functionality suitable for radiopharmaceuticals. The designed cyclic bisarylmercury was based on the water tolerance of organomercurials, higher bond dissociation energy of Hg-Ph to Hg-S, and the experimental evidence that acyclic structures suffer significant cleavage of one of the Hg-R bonds. The bispidine motif was chosen for its in vivo stability, chemical accessibility, and functionalization properties. Radionuclide production results in 197(m) HgCl2 (aq), so the desired mercury compound was formed via a water-tolerant organotin transmetallation. The Hg-bispidine compound showed high chemical stability in tests with an excess of sulfur-containing competitors and high in vivo stability, without any observable protein interaction by human serum assay, and good organ clearance demonstrated by biodistribution and SPECT studies in rats. In particular, no retention in the kidneys was observed, typical of unstable mercury compounds. The nat Hg analogue allowed full characterization by NMR and HRMS.


Asunto(s)
Mercurio/química , Compuestos Organometálicos/química , Radiofármacos/química , Nanomedicina Teranóstica , Estabilidad de Medicamentos , Humanos , Radioisótopos de Mercurio , Compuestos Organometálicos/sangre , Compuestos Organometálicos/síntesis química , Radiofármacos/sangre , Radiofármacos/síntesis química
14.
Cancers (Basel) ; 13(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923965

RESUMEN

Currently, targeted alpha therapy is one of the most investigated topics in radiopharmaceutical cancer management. Especially, the alpha emitter 225Ac has excellent nuclear properties and is gaining increasing popularity for the treatment of various tumor entities. We herein report on the synthesis of two universal 225Ac-chelators for mild condition radiolabeling and binding to conjugate molecules of pharmacological interest via the copper-mediated click chemistry. A convenient radiolabeling procedure was investigated as well as the complex stability proved for both chelators and two PSMA (prostate-specific membrane antigen)-targeting model radioconjugates. Studies regarding affinity and cell survival were performed on LNCaP cells followed by biodistribution studies, which were performed using LNCaP tumor-bearing mice. High efficiency radiolabeling for all conjugates was demonstrated. Cell binding studies revealed a fourfold lower cell affinity for the PSMA radioconjugate with one targeting motif compared to the radioconjugate owing two targeting motifs. Additionally, these differences were verified by in vitro cell survival evaluation and biodistribution studies, both showing a higher cell killing efficiency for the same dose, a higher tumor uptake (15%ID/g) and a rapid whole body clearance after 24 h. The synthesized chelators will overcome obstacles of lacking stability and worse labeling needs regarding 225Ac complexation using the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid) chelator. Moreover, the universal functionalization expands the coverage of these chelators in combination with any sensitive bio(macro)molecule, thus improving treatment of any addressable tumor target.

15.
Radiother Oncol ; 155: 285-292, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33227356

RESUMEN

BACKGROUND AND PURPOSE: Systemic molecular radiotherapy utilizes internal irradiation by radionuclide-labeled tumor-targeting agents with the potential to destroy (micro-)metastases. However, doses that are applicable in solid tumors do not reach the levels nessecary for tumor control. Thus, the combination of molecular and external radiotherapy is a promising treatment strategy, as enhanced tumor doses can be delivered with and without minor overlapping toxicities. Here, we combined a 90Y-labeled anti-EGFR antibody (Cetuximab) with clinically relevant fractionated radiotherapy in a preclinical trial using head and neck squamous cell carcinoma xenograft tumors. MATERIALS AND METHODS: To model 90Y-Cetuximab uptake for treatment schedule optimization, FaDu-bearing mice were injected with near-infrared-labeled-Cetuximab at different time points during radiotherapy with differing doses. Cetuximab uptake was longitudinally followed by in vivo-optical imaging. Tumor control probability experiments with fractionated radiotherapy (30 fx, 6 weeks, 8 dose groups/ arm) in combination with 90Y-Cetuximab were performed to test the curative potential. RESULTS: Imaging of near-infrared-labeled-Cetuximab uptake revealed that low to moderate external beam doses can enhance antibody uptake. Using the optimized schedule, combination of molecular and external radiotherapy using 90Y-Cetuximab at a dose that did not result in permanent tumor inactivation in previous experiments, led to substantially increased tumor control compared to radiotherapy alone. CONCLUSION: Our results indicate that combination of radiolabeled therapeutics with clinically relevant fractionated radiotherapy has a remarkable potential to improve curative treatment outcome. Application of some radiation dose prior to injection may improve drug uptake and enable patient stratification and treatment personalization via a corresponding PET-tracer during therapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Animales , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Cetuximab , Receptores ErbB , Humanos , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello
16.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992909

RESUMEN

Barium-131 is a single photon emission computed tomography (SPECT)-compatible radionuclide for nuclear medicine and a promising diagnostic match for radium-223/-224. Herein, we report on the sufficient production route 133Cs(p,3n)131Ba by using 27.5 MeV proton beams. An average of 190 MBq barium-131 per irradiation was obtained. The SR Resin-based purification process led to barium-131 in high radiochemical purity. An isotopic impurity of 0.01% barium-133 was detectable. For the first time, radiolabeling of the ligand macropa with barium-131 was performed. Radiolabeling methods under mild conditions and reaction controls based on TLC systems were successfully applied. Small animal SPECT/ computed tomography (CT) measurements and biodistribution studies were performed using [131Ba]Ba(NO3)2 as reference and 131Ba-labeled macropa in healthy mice for the first time. Biodistribution studies revealed the expected rapid bone uptake of [131Ba]Ba2+, whereas 131Ba-labeled macropa showed a fast clearance from the blood, thereby showing a significantly (p < 0.001) lower accumulation in the bone. We conclude that barium-131 is a promising SPECT radionuclide and delivers appropriate imaging qualities in small animals. Furthermore, the relative stability of the 131Ba-labeled macropa complex in vivo forms the basis for the development of sufficient new chelators, especially for radium isotopes. Thereby, barium-131 will attain its goal as a diagnostic match to the alpha emitters radium-223 and radium-224.

17.
18.
ChemistryOpen ; 9(8): 797-805, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32775141

RESUMEN

The treatment of cancer patients with α-particle-emitting therapeutics continues to gain in importance and relevance. The range of radiopharmaceutically relevant α-emitters is limited to a few radionuclides, as stable chelators or carrier systems for safe transport of the radioactive cargo are often lacking. Encapsulation of α-emitters into solid inorganic systems can help to diversify the portfolio of candidate radionuclides, provided, that these nanomaterials effectively retain both the parent and the recoil daughters. We therefore focus on designing stable and defined nanocarrier-based systems for various clinically relevant radionuclides, including the promising α-emitting radionuclide 224Ra. Hence, sub-10 nm barium sulfate nanocontainers were prepared and different radiometals like 89Zr, 111In, 131Ba, 177Lu or 224Ra were incorporated. Our system shows stabilities of >90 % regarding the radiometal release from the BaSO4 matrix. Furthermore, we confirm the presence of surface-exposed amine functionalities as well as the formation of a biomolecular corona.


Asunto(s)
Sulfato de Bario/química , Portadores de Fármacos/química , Nanopartículas del Metal/química , Metales Pesados/química , Radioisótopos/química , Radiofármacos/química , Alendronato/química , Sangre/metabolismo , Portadores de Fármacos/metabolismo , Estabilidad de Medicamentos , Humanos , Tamaño de la Partícula , Medicina de Precisión , Corona de Proteínas/química , Radiofármacos/metabolismo
19.
Recent Results Cancer Res ; 216: 227-282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32594389

RESUMEN

Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Radiofármacos
20.
Chem Commun (Camb) ; 55(53): 7631-7634, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31197298

RESUMEN

Despite their attractive properties, internal targeted alpha therapies using 223/224Ra are limited to bone-seeking applications. As there is no suitable chelator available, the search for new carriers to stably bind Ra2+ and to connect it to biological target molecules is necessary. Polyoxopalladates represent a class of compounds where Ra2+ can be easily introduced into the Pd-POM core during a facile one-pot preparation. Due to the formation of a protein corona, the connection to other targeting (bio)macromolecules is possible.


Asunto(s)
Compuestos Organometálicos/química , Paladio/química , Polímeros/química , Radiofármacos/química , Radio (Elemento)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...