Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 13: 350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417367

RESUMEN

Histopathological studies revealed that progressive neuropathies including Alzheimer, and Prion diseases among others, include accumulations of misfolded proteins intracellularly, extracellularly, or both. Experimental evidence suggests that among the accumulated misfolded proteins, small soluble oligomeric conformers represent the most neurotoxic species. Concomitant phenomena shared by different protein misfolding diseases includes alterations in phosphorylation-based signaling pathways synaptic dysfunction, and axonal pathology, but mechanisms linking these pathogenic features to aggregated neuropathogenic proteins remain unknown. Relevant to this issue, results from recent work revealed inhibition of fast axonal transport (AT) as a novel toxic effect elicited by oligomeric forms of amyloid beta and cellular prion protein PrPC, signature pathological proteins associated with Alzheimer and Prion diseases, respectively. Interestingly, the toxic effect of these oligomers was fully prevented by pharmacological inhibitors of casein kinase 2 (CK2), a remarkable discovery with major implications for the development of pharmacological target-driven therapeutic intervention for Alzheimer and Prion diseases.

2.
Neurobiol Aging ; 64: 44-57, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29331876

RESUMEN

Deposition of amyloid-ß (Aß), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aß-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aß deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aß toxicity by a mechanism that required Go-Gßγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gßγ complex, inhibited Aß-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aß pathology. Our data provide further evidence for the involvement of APP/Go protein in Aß-induced degeneration and reveal that Gßγ complex is a signaling target potentially relevant for developing therapies for halting Aß degeneration in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Encéfalo/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Células Cultivadas , Disfunción Cognitiva/patología , Disfunción Cognitiva/terapia , Modelos Animales de Enfermedad , Hipocampo , Ratones Transgénicos , Terapia Molecular Dirigida , Complejos Multiproteicos , Ratas
3.
PLoS One ; 12(12): e0188340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261664

RESUMEN

Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Priónicas/fisiología , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Cinesinas/metabolismo , Ratones , Mitocondrias/metabolismo , Fosforilación
4.
PLoS One ; 8(6): e65235, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776455

RESUMEN

Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Transporte Axonal/efectos de los fármacos , Degeneración Nerviosa/patología , Superóxido Dismutasa/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Transporte Axonal/fisiología , Decapodiformes , Inmunohistoquímica , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Espectrometría de Masas , Ratones , Mutación/genética , Fosforilación , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
5.
Exp Neurol ; 246: 44-53, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22721767

RESUMEN

Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Transporte Axonal/fisiología , Axones/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Transducción de Señal/fisiología , Animales , Axones/metabolismo , Humanos
6.
J Neurosci ; 31(27): 9858-68, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21734277

RESUMEN

Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2-18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.


Asunto(s)
Transporte Axonal/genética , Axones/patología , Encéfalo/patología , Cinesinas/metabolismo , Fosfotransferasas/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Análisis de Varianza , Animales , Transporte Axonal/efectos de los fármacos , Axones/efectos de los fármacos , Axones/metabolismo , Decapodiformes , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Técnicas In Vitro , Cinesinas/genética , Modelos Biológicos , Mutagénesis/genética , Fragmentos de Péptidos/metabolismo , Isótopos de Fósforo/farmacocinética , Fosfotransferasas/genética , Proteínas Proto-Oncogénicas c-jun/farmacocinética , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/genética , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA