Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(46): 29080-29089, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139568

RESUMEN

The attentional control of behavior is a higher-order cognitive function that operates through attention and response inhibition. The locus coeruleus (LC), the main source of norepinephrine in the brain, is considered to be involved in attentional control by modulating the neuronal activity of the prefrontal cortex (PFC). However, evidence for the causal role of LC activity in attentional control remains elusive. Here, by using behavioral and optogenetic techniques, we investigate the effect of LC neuron activation or inhibition in operant tests measuring attention and response inhibition (i.e., a measure of impulsive behavior). We show that LC neuron stimulation increases goal-directed attention and decreases impulsivity, while its suppression exacerbates distractibility and increases impulsive responding. Remarkably, we found that attention and response inhibition are under the control of two divergent projections emanating from the LC: one to the dorso-medial PFC and the other to the ventro-lateral orbitofrontal cortex, respectively. These findings are especially relevant for those pathological conditions characterized by attention deficits and elevated impulsivity.


Asunto(s)
Atención/fisiología , Lóbulo Frontal/metabolismo , Conducta Impulsiva/fisiología , Norepinefrina/metabolismo , Animales , Encéfalo/metabolismo , Cognición/fisiología , Lóbulo Frontal/efectos de los fármacos , Inhibición Psicológica , Locus Coeruleus/fisiología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Norepinefrina/farmacología , Corteza Prefrontal/fisiología
2.
Curr Opin Behav Sci ; 26: 97-106, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32832584

RESUMEN

The neural mechanisms underlying emotional valence are at the interface between perception and action, integrating inputs from the external environment with past experiences to guide the behavior of an organism. Depending on the positive or negative valence assigned to an environmental stimulus, the organism will approach or avoid the source of the stimulus. Multiple convergent studies have demonstrated that the amygdala complex is a critical node of the circuits assigning valence. Here we examine the current progress in identifying valence coding properties of neural populations in different nuclei of the amygdala, based on their activity, connectivity, and gene expression profile.

3.
Neuron ; 101(2): 274-284.e5, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30551997

RESUMEN

Animals need to optimize the efficacy of memory retrieval to adapt to environmental circumstances for survival. The recent development of memory engram labeling technology allows a precise investigation of the processes associated with the recall of a specific memory. Here, we show that engram cell excitability is transiently increased following memory reactivation. This short-term increase of engram excitability enhances the subsequent retrieval of specific memory content in response to cues and is manifest in the animal's ability to recognize contexts more precisely and more effectively. These results reveal a hitherto unknown transient enhancement of context recognition based on the plasticity of engram cell excitability. They also suggest that recall of a contextual memory is influenced by previous but recent activation of the same engram. The state of excitability of engram cells mediates differential behavioral outcomes upon memory retrieval and may be crucial for survival by promoting adaptive behavior.


Asunto(s)
Giro Dentado/citología , Potenciales de la Membrana/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Animales , Anisomicina/farmacología , Proteínas Bacterianas/genética , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Condicionamiento Psicológico/fisiología , Doxiciclina/farmacología , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Imidazoles/farmacología , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Ratones , Ratones Transgénicos , Microscopía Confocal , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fenantrolinas/farmacología , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Transducción Genética
4.
Nat Neurosci ; 19(12): 1636-1646, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27749826

RESUMEN

The basolateral amygdala (BLA) is a site of convergence of negative and positive stimuli and is critical for emotional behaviors and associations. However, the neural substrate for negative and positive behaviors and relationship between negative and positive representations in the basolateral amygdala are unknown. Here we identify two genetically distinct, spatially segregated populations of excitatory neurons in the mouse BLA that participate in valence-specific behaviors and are connected through mutual inhibition. These results identify a genetically defined neural circuit for the antagonistic control of emotional behaviors and memories.


Asunto(s)
Potenciales de Acción/fisiología , Amígdala del Cerebelo/fisiología , Complejo Nuclear Basolateral/fisiología , Inhibición Psicológica , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Emociones/fisiología , Ratones
5.
BMC Biol ; 14: 40, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27197636

RESUMEN

The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.


Asunto(s)
Encéfalo/fisiología , Memoria/fisiología , Animales , Epigenómica , Hipocampo/fisiología , Humanos , Modelos Animales , Neuronas/fisiología , Columna Vertebral/fisiología , Sinapsis/fisiología
6.
Nature ; 531(7595): 508-12, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26982728

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Giro Dentado/citología , Giro Dentado/fisiología , Modelos Animales de Enfermedad , Memoria a Largo Plazo/fisiología , Envejecimiento , Amnesia/patología , Amnesia/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Giro Dentado/patología , Giro Dentado/fisiopatología , Intervención Médica Temprana , Humanos , Potenciación a Largo Plazo , Masculino , Memoria Episódica , Ratones , Ratones Transgénicos , Optogenética , Placa Amiloide , Presenilina-1/genética , Sinapsis/metabolismo , Transgenes/genética , Proteínas tau/genética
7.
Curr Opin Neurobiol ; 35: 101-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26280931

RESUMEN

A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage.


Asunto(s)
Amnesia Retrógrada/fisiopatología , Genes Inmediatos-Precoces/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Optogenética/métodos , Amnesia Retrógrada/metabolismo , Animales , Genes Inmediatos-Precoces/genética , Humanos , Neuronas/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(30): 9466-71, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170279

RESUMEN

Entorhinal-hippocampal circuits in the mammalian brain are crucial for an animal's spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca(2+) imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells' and ocean cells' contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits.


Asunto(s)
Corteza Entorrinal/citología , Hipocampo/metabolismo , Potenciales de Acción , Animales , Mapeo Encefálico/métodos , Calcio/metabolismo , Dependovirus , Colorantes Fluorescentes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Modelos Neurológicos , Vías Nerviosas/citología , Neuronas/citología
9.
Science ; 348(6238): 1007-13, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26023136

RESUMEN

Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively through the stabilization of memory engrams. By using learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. Although these properties are lacking in engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process.


Asunto(s)
Amnesia Retrógrada/fisiopatología , Dendritas/fisiología , Memoria a Largo Plazo/fisiología , Amnesia Retrógrada/inducido químicamente , Amígdala del Cerebelo/química , Amígdala del Cerebelo/fisiopatología , Animales , Condicionamiento Clásico , Dendritas/química , Dendritas/patología , Giro Dentado/química , Giro Dentado/patología , Giro Dentado/fisiopatología , Colorantes Fluorescentes/análisis , Proteínas Luminiscentes/análisis , Ratones , Plasticidad Neuronal/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Coloración y Etiquetado , Sinapsis/fisiología , Proteína Fluorescente Roja
10.
Science ; 343(6173): 896-901, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24457215

RESUMEN

Episodic memory requires associations of temporally discontiguous events. In the entorhinal-hippocampal network, temporal associations are driven by a direct pathway from layer III of the medial entorhinal cortex (MECIII) to the hippocampal CA1 region. However, the identification of neural circuits that regulate this association has remained unknown. In layer II of entorhinal cortex (ECII), we report clusters of excitatory neurons called island cells, which appear in a curvilinear matrix of bulblike structures, directly project to CA1, and activate interneurons that target the distal dendrites of CA1 pyramidal neurons. Island cells suppress the excitatory MECIII input through the feed-forward inhibition to control the strength and duration of temporal association in trace fear memory. Together, the two EC inputs compose a control circuit for temporal association memory.


Asunto(s)
Asociación , Región CA1 Hipocampal/fisiología , Corteza Entorrinal/fisiología , Memoria Episódica , Neuronas/fisiología , Animales , Región CA1 Hipocampal/citología , Corteza Entorrinal/citología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa
11.
Nat Neurosci ; 17(2): 269-79, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336151

RESUMEN

The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.


Asunto(s)
Región CA2 Hipocampal/citología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/metabolismo , Optogenética , Animales , Corteza Entorrinal/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Estimulación Luminosa , Proteínas RGS/genética , Proteínas RGS/metabolismo
12.
Science ; 341(6144): 387-91, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23888038

RESUMEN

Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.


Asunto(s)
Región CA1 Hipocampal/fisiología , Condicionamiento Psicológico , Giro Dentado/fisiología , Memoria/fisiología , Neuronas/fisiología , Amígdala del Cerebelo/fisiología , Animales , Asociación , Región CA1 Hipocampal/citología , Channelrhodopsins , Giro Dentado/citología , Dependovirus/genética , Doxiciclina/administración & dosificación , Miedo , Genes fos , Luz , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética
13.
Neurobiol Dis ; 48(3): 409-17, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22842017

RESUMEN

The pathophysiology of Huntington's disease (HD) is primarily associated with striatal degeneration and a number of behavioral symptoms such as involuntary movements, cognitive decline, psychiatric disorders, and in the most juvenile-onset cases with epilepsy. In addition to several changes in cellular and synaptic properties previously reported in HD, attention was recently driven towards the potential relationships between cognitive deficits and sleep disturbances in patients and animal models of Huntington's disease. In the present study, we have investigated whether the population-activity patterns normally expressed by the hippocampal and neocortical circuits during active and slow-wave states are affected in R6/1 mice, a model of Huntington's disease. By performing electrophysiological recordings from the hippocampus and neocortex of R6/1 mice that were either freely moving, head restrained or anesthetized, we observed an altered segregation of active and slow wave brain states, in relation with an epileptic phenotype. Slow-wave state (SWS) in R6/1 was characterized by the intrusion of active-state features (increased 6-10 Hz theta power and depressed 2-3 Hz delta power) and transient, temporally misplaced ("ectopic") theta oscillations. The epileptic phenotype, in addition to previously reported occasional ictal seizures, was characterized by the systematic presence of interictal activity, confined to SWS. Ectopic theta episodes, which could be reversed by the cholinergic antagonist atropine, concentrated interictal spikes and phase-locked hippocampal sharp-wave-ripples. These results point to major alterations of neuronal activity during rest in R6/1 mice, potentially involving anomalous activation of the cholinergic system, which may contribute to the cognitive deficits observed in Huntington's disease.


Asunto(s)
Hipocampo/fisiopatología , Enfermedad de Huntington/fisiopatología , Neocórtex/fisiopatología , Vías Nerviosas/fisiopatología , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Ratones , Ratones Transgénicos
14.
J Physiol Paris ; 106(3-4): 81-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21964249

RESUMEN

Theta oscillations represent the neural network configuration underlying active awake behavior and paradoxical sleep. This major EEG pattern has been extensively studied, from physiological to anatomical levels, for more than half a century. Nevertheless the cellular and network mechanisms accountable for the theta generation are still not fully understood. This review synthesizes the current knowledge on the circuitry involved in the generation of theta oscillations, from the hippocampus to extra hippocampal structures such as septal complex, entorhinal cortex and pedunculopontine tegmentum, a main trigger of theta state through direct and indirect projections to the septal complex. We conclude with a short overview of the perspectives offered by technical advances for deciphering more precisely the different neural components underlying the emergence of theta oscillations.


Asunto(s)
Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Ritmo Teta/fisiología , Amígdala del Cerebelo/fisiología , Animales , Tronco Encefálico/fisiología , Electroencefalografía , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Humanos , Ratones , Núcleos Talámicos de la Línea Media/fisiología , Corteza Prefrontal/fisiología , Ratas , Núcleos Septales/fisiología , Vigilia/fisiología
15.
J Comput Neurosci ; 24(3): 330-45, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18044016

RESUMEN

Electrical synapses continuously transfer signals bi-directionally from one cell to another, directly or indirectly via intermediate cells. Electrical synapses are common in many brain structures such as the inferior olive, the subcoeruleus nucleus and the neocortex, between neurons and between glial cells. In the cortex, interneurons have been shown to be electrically coupled and proposed to participate in large, continuous cortical syncytia, as opposed to smaller spatial domains of electrically coupled cells. However, to explore the significance of these findings it is imperative to map the electrical synaptic microcircuits, in analogy with in vitro studies on monosynaptic and disynaptic chemical coupling. Since "walking" from cell to cell over large distances with a glass pipette is challenging, microinjection of (fluorescent) dyes diffusing through gap-junctions remains so far the only method available to decipher such microcircuits even though technical limitations exist. Based on circuit theory, we derive analytical descriptions of the AC electrical coupling in networks of isopotential cells. We then suggest an operative electrophysiological protocol to distinguish between direct electrical connections and connections involving one or more intermediate cells. This method allows inferring the number of intermediate cells, generalizing the conventional coupling coefficient, which provides limited information. We validate our method through computer simulations, theoretical and numerical methods and electrophysiological paired recordings.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Umbral Sensorial/fisiología , Sinapsis/fisiología , Animales , Conductividad Eléctrica , Impedancia Eléctrica , Electrofisiología , Uniones Comunicantes/fisiología , Modelos Neurológicos , Ratas , Ratas Wistar , Tiempo de Reacción , Corteza Somatosensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...