Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 25(16): 3295-300, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26081289

RESUMEN

Inhibition of cyclooxygenase-2 (COX-2) is a promising anti-inflammatory therapeutic strategy, but long-term medication with COX-2-inhibitors (coxibs) may be associated with adverse cardiovascular effects. Functionalization of existing lead structures with nitric oxide (NO)-releasing moieties is an auspicious approach to minimize these effects. In this regard, an organic nitrate (-O-NO2) substituent was introduced at a (pyrazolyl)benzenesulfonamide lead structure. The novel NO-coxibs selectively inhibited COX-2 in a low micromolar range (IC50(COX-2): 0.22-1.27 µM) and are supposed to be promising anti-inflammatory compounds with, in parallel, positive effects on vascular homeostasis.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Óxido Nítrico/metabolismo , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Enfermedades Cardiovasculares/inducido químicamente , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Activación Enzimática/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Sulfonamidas/química , Bencenosulfonamidas
2.
J Org Chem ; 80(11): 5611-24, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25909690

RESUMEN

A new compound class of diaryl-substituted heterocycles with tricyclic dihydropyrrolo[3,2,1-hi]indole and pyrrolo[3,2,1-hi]indole core structures has been designed and was synthesized by a modular sequence of Friedel-Crafts acylation, amide formation, and McMurry cyclization. This synthesis route represents a novel and versatile access toward dihydropyrrolo[3,2,1-hi]indoles and is characterized by good chemical yields and high modularity. From a set of 19 derivatives, 11 candidates were selected for determination of their COX inhibition potency and were found to be selective inhibitors with high affinity to COX-2 (IC50 ranging from 20-2500 nM and negligible inhibition of COX-1). The binding mode of the novel inhibitors in the active side of COX-2 was calculated in silico using the protein-ligand docking program GOLD by application of the molecular structures of two compounds derived from X-ray crystallography. Two novel compounds with high affinity to COX-2 (6k = 70 nM, 8e = 60 nM) have a fluoro substituent, making them promising candidates for the development of (18)F-radiolabeled COX-2 inhibitors for imaging purposes with positron emission tomography (PET).


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/síntesis química , Indoles/química , Indoles/síntesis química , Pirroles/química , Acilación , Diseño de Fármacos , Estructura Molecular , Tomografía de Emisión de Positrones
3.
Inorg Chem ; 51(20): 10723-7, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22998521

RESUMEN

A series of high-temperature solid state chemical reactions was carried out in the quasi-quarternary mixed-halide Cs-Zr-B-(Cl,I) system with stoichiometries aiming for zirconium cluster phases of the Cs(2)[(Zr(6)B)X(15)] type (X = mixture of Cl + I). In the phase range from ~ Cs(2)[(Zr(6)B)Cl(13)I(2)] to Cs(2)[(Zr(6)B)Cl(3)I(12)] the structures of the obtained cluster phases are derived from the orthorhombic CsK[(Zr(6)B)Cl(15)]. At a composition of Cs(2)[(Zr(6)B)Cl(~10) I(~4)] a lower symmetry, monoclinic derivative has been found. X-ray diffraction data of single crystals of three compounds of this phase system were collected, orthorhombic Cs(2)[(Zr(6)B)Cl(12.99(3))I(2.01)] (1), (Pmma, Z = 4, a = 19.304(4), b = 14.617(3), c = 9.921(2) Å, R1/wR2 = 0.0444/0.0886), monoclinic Cs(2)[(Zr(6)B)Cl(10.63(3))I(4.37)] (2), (P2/c, Z = 4, a = 14.9502(3), b = 10.0098(2), c = 19.8798(4) Å, ß = 90.977(1) R1/wR2 = 0.0460/0.1182), and orthorhombic Cs(2)[(Zr(6)B)Cl(8.79(4))I(6.21)] (3) (Pmma, Z = 4, a = 20.0534(4), b = 15.1488(3), c = 10.1739(2) Å, R1/wR2 = 0.0494/0.1123). These compounds are obtained as single phase products. As in other known mixed-halide systems halide ordering is observed, such that the different halide sites have different amounts of Cl and I. With increasing amount of iodide, relative to Cl, the cluster-interconnecting halide sites are more and more occupied by I. For the first time it is observed for 3 that a halide site, which forms a linear bridge between two neighboring Zr(6)B cluster units (so far known examples are solely occupied by Cl), is statistically mixed occupied by Cl and I. Nevertheless, both halide types achieve acceptable bonding situations (bond lengths) because the I atoms are moved out of the linearly bridging position, thereby achieving longer Zr-X distances than the Cl atom, which remains linearly bridging. The generally interesting aspect of this paper is that in the very complex systems the atoms of the mixed occupied sites as well as those of the cation sites arrange with respect to the atomic environment, such that all of them have optimized bonding situations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...