Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(17): 5571-5582, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602843

RESUMEN

In chemical library analysis, it may be useful to describe libraries as individual items rather than collections of compounds. This is particularly true for ultra-large noncherry-pickable compound mixtures, such as DNA-encoded libraries (DELs). In this sense, the chemical library space (CLS) is useful for the management of a portfolio of libraries, just like chemical space (CS) helps manage a portfolio of molecules. Several possible CLSs were previously defined using vectorial library representations obtained from generative topographic mapping (GTM). Given the steadily growing number of DEL designs, the CLS becomes "crowded" and requires analysis tools beyond pairwise library comparison. Therefore, herein, we investigate the cartography of CLS on meta-(µ)GTMs─"meta" to remind that these are maps of the CLS, itself based on responsibility vectors issued by regular CS GTMs. 2,5 K DELs and ChEMBL (reference) were projected on the µGTM, producing landscapes of library-specific properties. These describe both interlibrary similarity and intrinsic library characteristics in the same view, herewith facilitating the selection of the best project-specific libraries.


Asunto(s)
Bibliotecas de Moléculas Pequeñas , Biblioteca de Genes
2.
J Chem Inf Model ; 63(13): 4042-4055, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37368824

RESUMEN

The development of DNA-encoded library (DEL) technology introduced new challenges for the analysis of chemical libraries. It is often useful to consider a chemical library as a stand-alone chemoinformatic object─represented both as a collection of independent molecules, and yet an individual entity─in particular, when they are inseparable mixtures, like DELs. Herein, we introduce the concept of chemical library space (CLS), in which resident items are individual chemical libraries. We define and compare four vectorial library representations obtained using generative topographic mapping. These allow for an effective comparison of libraries, with the ability to tune and chemically interpret the similarity relationships. In particular, property-tuned CLS encodings enable to simultaneously compare libraries with respect to both property and chemotype distributions. We apply the various CLS encodings for the selection problem of DELs that optimally "match" a reference collection (here ChEMBL28), showing how the choice of the CLS descriptors may help to fine-tune the "matching" (overlap) criteria. Hence, the proposed CLS may represent a new efficient way for polyvalent analysis of thousands of chemical libraries. Selection of an easily accessible compound collection for drug discovery, as a substitute for a difficult to produce reference library, can be tuned for either primary or target-focused screening, also considering property distributions of compounds. Alternatively, selection of libraries covering novel regions of the chemical space with respect to a reference compound subspace may serve for library portfolio enrichment.


Asunto(s)
ADN , Bibliotecas de Moléculas Pequeñas , Bibliotecas de Moléculas Pequeñas/química , ADN/química , Biblioteca de Genes , Descubrimiento de Drogas/métodos
3.
Mol Inform ; 41(6): e2100289, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34981643

RESUMEN

DNA-Encoded Library (DEL) technology has emerged as an alternative method for bioactive molecules discovery in medicinal chemistry. It enables the simple synthesis and screening of compound libraries of enormous size. Even though it gains more and more popularity each day, there are almost no reports of chemoinformatics analysis of DEL chemical space. Therefore, in this project, we aimed to generate and analyze the ultra-large chemical space of DEL. Around 2500 DELs were designed using commercially available building blocks resulting in 2,5B DEL compounds that were compared to biologically relevant compounds from ChEMBL using Generative Topographic Mapping. This allowed to choose several optimal DELs covering the chemical space of ChEMBL to the highest extent and thus containing the maximum possible percentage of biologically relevant chemotypes. Different combinations of DELs were also analyzed to identify a set of mutually complementary libraries allowing to attain even higher coverage of ChEMBL than it is possible with one single DEL.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Quimioinformática , Química Farmacéutica , ADN/química , Descubrimiento de Drogas/métodos , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...