Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Gene Ther ; 25(11): 942-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25072110

RESUMEN

Abstract Malignant gliomas (MGs) are highly vascularized, aggressive brain cancers carrying a dismal prognosis. Because of their high vascularity, anti-angiogenic therapy is a potential treatment option. Indeed, the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has demonstrated promising results in clinical trials. Similarly, adenovirus-medicated Herpes simplex virus thymidine kinase and ganciclovir (AdHSV-tk/GCV) suicide gene therapy has established itself in clinical trials as a potential novel therapeutic strategy for MGs. In this study, we demonstrate the feasibility of combining adenovirus-mediated soluble VEGF receptor-1 anti-angiogenic gene therapy with AdHSV-tk/GCV suicide gene therapy to treat experimental MGs. Our results reveal that, apart from inhibiting angiogenesis, other anti-tumor mechanisms, such as reduction of infiltration by tumor-associated macrophages/microglia, may contribute to the improved therapeutic benefit of combination therapy.


Asunto(s)
Neoplasias Encefálicas/terapia , Terapia Genética , Glioma/terapia , Neovascularización Patológica/terapia , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Animales Endogámicos , Neoplasias Encefálicas/irrigación sanguínea , Línea Celular Tumoral , Supervivencia Celular , Glioma/irrigación sanguínea , Células HEK293 , Humanos , Masculino , Trasplante de Neoplasias , Neovascularización Patológica/genética , Unión Proteica , Ratas , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Cancer Res ; 72(23): 6227-35, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23041549

RESUMEN

Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that regulates protection against a wide variety of toxic insults to cells, including cytotoxic cancer chemotherapeutic drugs. Many lung cancer cells harbor a mutation in either Nrf2 or its inhibitor Keap1 resulting in permanent activation of Nrf2 and chemoresistance. In this study, we sought to examine whether this attribute could be exploited in cancer suicide gene therapy by using a lentiviral (LV) vector expressing herpes simplex virus thymidine kinase (HSV-TK/GCV) under the regulation of antioxidant response element (ARE), a cis-acting enhancer sequence that binds Nrf2. In human lung adenocarcinoma cells in which Nrf2 is constitutively overexpressed, ARE activity was found to be high under basal conditions. In this setting, ARE-HSV-TK was more effective than a vector in which HSV-TK expression was driven by a constitutively active promoter. In a mouse xenograft model of lung cancer, suicide gene therapy with LV-ARE-TK/GCV was effective compared with LV-PGK-TK/GCV in reducing tumor size. We conclude that ARE-regulated HSV-TK/GCV therapy offers a promising approach for suicide cancer gene therapy in cells with high constitutive ARE activity, permitting a greater degree of therapeutic targeting to those cells.


Asunto(s)
Adenocarcinoma/terapia , Elementos de Respuesta Antioxidante , Ganciclovir/farmacología , Terapia Genética/métodos , Neoplasias Pulmonares/terapia , Estrés Oxidativo/fisiología , Timidina Quinasa/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Ganciclovir/farmacocinética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Lentivirus/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Mutación , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Timidina Quinasa/biosíntesis , Timidina Quinasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
PLoS One ; 7(7): e41410, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844475

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is overexpressed in many solid tumor types, such as ovarian carcinoma. Immunoliposome based drug targeting has shown promising results in drug delivery to the tumors. However, the ratio of tumor-to-normal tissue concentrations should be increased to minimize the adverse effects of cytostatic drugs. METHODOLOGY/PRINCIPAL FINDINGS: We studied the EGFR-targeted doxorubicin immunoliposomes using pre-targeting and local intraperitoneal (i.p.) administration of the liposomes. This approach was used to increase drug delivery to tumors as compared to direct intravenous (i.v.) administration of liposomes. EGFR antibodies were attached on the surface of PEG coated liposomes using biotin-neutravidin binding. Receptor mediated cellular uptake and cytotoxic efficacy of EGFR-targeted liposomes were investigated in human ovarian adenocarcinoma (SKOV-3 and SKOV3.ip1) cells. In vivo distribution of the liposomes in mice was explored using direct and pre-targeting approaches and SPECT/CT imaging. Targeted liposomes showed efficient and specific receptor-mediated binding to ovarian carcinoma cells in vitro, but the difference in cytotoxicity between targeted and non-targeted liposomes remained small. The relatively low cytotoxic efficacy is probably due to insufficient doxorubicin release from the liposomes rather than lack of target binding. Tumor uptake of targeted liposomes in vivo was comparable to that of non-targeted liposomes after both direct and pre-targeting administration. For both EGFR-targeted and non-targeted liposomes, the i.p. administration increased liposome accumulation to the tumors compared to i.v. injections. CONCLUSIONS/SIGNIFICANCE: Intraperitoneal administration of liposomes may be a beneficial approach to treat the tumors in the abdominal cavity. The i.p. pre-targeting method warrants further studies as a potential approach in cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Doxorrubicina/administración & dosificación , Terapia Molecular Dirigida/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados , Avidina/metabolismo , Biotina/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Cetuximab , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Estudios de Factibilidad , Femenino , Humanos , Liposomas , Ratones , Imagen Multimodal , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
4.
J Gene Med ; 14(4): 221-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22411578

RESUMEN

BACKGROUND: A considerable percentage of tumors are not amenable to surgery. We have designed a simple and powerful targeting system that offers an alternative option for the multi-component pre-targeting strategies used clinically. This targeting system can be used for any type of solid tumors independent of the tumor type, thereby omitting the need to engineer unique antibodies for each specific application or tumour type. In the present study, we show the expression of a chimeric fusion protein, which contains the low-density lipoprotein receptor transmembrane domains and avidin, after local gene transfer and its ability to bind biotinylated compounds in vivo. METHODS: Semliki Forest virus and lentivirus vectors were used to express the fusion protein with a high affinity binding site for biotinylated compounds in the tumor. Three different animal models and imaging modalities were used for the demonstration of the functionality and efficacy of the targeting system in vitro and in vivo. RESULTS: We demonstrate targeting of biotinylated compounds after local gene transfer in vivo using two different gene transfer vectors. The findings were confirmed by immunohistochemistry, single-photon emission computed tomography and magnetic resonance imaging. The therapeutic efficacy was tested in a syngeneic rat glioma model by injecting biotinylated-(90) Yttrium into the tail vein of glioma bearing rats. The study demonstrates that animals, which were treated by using the gene therapy based targeting system, lived significantly longer than control animals. CONCLUSIONS: Our gene therapy based targeting system is a promising tool for the treatment of inoperable tumors and other disease conditions, as well as diagnostic imaging.


Asunto(s)
Avidina/genética , Terapia Genética/métodos , Glioma/terapia , Receptores de LDL/genética , Animales , Avidina/metabolismo , Biotinilación , Vectores Genéticos , Glioma/genética , Lentivirus/genética , Ratones , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Ratas , Receptores de LDL/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Virus de los Bosques Semliki/genética
5.
Mol Ther Nucleic Acids ; 1: e19, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23344000

RESUMEN

Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs) in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.

6.
Expert Opin Drug Deliv ; 7(5): 551-64, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20233034

RESUMEN

IMPORTANCE OF THE FIELD: The goal of drug targeting is to increase the concentration of the drug in the vicinity of the cells responsible for disease without affecting healthy cells. Many approaches in cancer treatment are limited because of their broad range of unwanted side effects on healthy cells. Targeting can reduce side effects and increase efficacy of drugs in the patient. AREAS COVERED IN THIS REVIEW: Avidin, originally isolated from chicken eggs, and its bacterial analogue, streptavidin, from Streptomyces avidinii, have extremely high affinity for biotin. This unique feature is the basis of avidin-biotin technology. This article reviews the current status of avidin-biotin systems and their use for pretargeted drug delivery and vector targeting. WHAT THE READER WILL GAIN: The reader will gain an understanding of the following approaches using the avidin-biotin system: i) targeting antibodies and therapeutic molecules are administered separately leading to a reduction of drug dose in normal tissues compared with conventional (radio)immunotherapies; ii) introducing avidin gene into specific tissues by local gene transfer, which subsequently can sequester and concentrate considerable amounts of therapeutic ligands; and iii) enabling transductional targeting of gene therapy vectors. TAKE HOME MESSAGE: Avidin and biotin technology has proved to be an extremely versatile tool with broad applications, such as pretargeting, delivering avidin gene into cells enabling targeting of biotinylated compounds and targeting of viral vectors.


Asunto(s)
Avidina/metabolismo , Biotina/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Animales , Avidina/química , Avidina/genética , Biotina/química , Humanos , Transducción Genética/métodos
7.
Hum Gene Ther ; 21(4): 381-96, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20163246

RESUMEN

In 1971 Judah Folkman proposed the concept of antiangiogenesis as a therapeutic target for cancer. More than 30 years later, concept became reality with the approval of the antivascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab as a first-line treatment for metastatic colorectal cancer. Monoclonal antibodies and small molecular drugs are the most widely applied methods for inhibition of angiogenesis. The efficacy of these antiangiogenic modalities has been proven, in both preclinical and clinical settings. Although angiogenesis plays a major role in wound healing, hypoxia, and in the female reproductive cycle, inhibition of angiogenesis seems to be a relatively safe therapeutic option against cancers, and has therefore become a logical arena for a wide range of experimentation. The twentieth century has shown the boom of gene therapy and thus it has been applied also in the antiangiogenic setting. This review summarizes methods to induce antiangiogenic responses with gene therapy and discusses the obstacles and future prospects of antiangiogenic cancer gene therapy.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Terapia Genética/métodos , Neoplasias/terapia , Neovascularización Patológica/terapia , Inhibidores de la Angiogénesis/genética , Inhibidores de la Angiogénesis/metabolismo , Antineoplásicos/metabolismo , Femenino , Humanos , Masculino , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología
8.
Curr Opin Mol Ther ; 11(5): 485-92, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19806496

RESUMEN

Gliomas are among the most lethal malignancies, and constitute more than 70% of all brain tumors. Standard therapy includes surgical resection followed by adjuvant radiotherapy and/or chemotherapy. Malignant gliomas are considered to be non-curable, and the overall prognosis of treatment success is poor with a mean survival of 14.6 months after diagnosis and a 5-year survival rate of 9.8%. The diffusely infiltrating property of the tumors makes total surgical excision often impossible, leading to eventual tumor recurrence. The maximum radiation dose that can be administered to the brain is limited to approximately 60 Gy, which is usually not sufficient to completely eradicate the tumor given that some brain tumors are resistant to radiotherapy. The limitations and short-comings of the available treatment options have provided the impetus to test novel therapy modalities to improve quality of life and increase survival of patients with gliomas.


Asunto(s)
Adenoviridae/genética , Neoplasias Encefálicas/terapia , Ensayos Clínicos como Asunto , Terapia Genética/métodos , Glioblastoma/terapia , Neoplasias Encefálicas/mortalidad , Vectores Genéticos/genética , Glioblastoma/mortalidad , Humanos , Análisis de Supervivencia , Tasa de Supervivencia , Resultado del Tratamiento
9.
Curr Gene Ther ; 9(5): 356-67, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19860650

RESUMEN

With the introduction of sophisticated tools of molecular biology, prodrug activating gene therapies have evolved as a novel therapeutic option for high-grade malignant gliomas. Herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) is an extensively studied form of cytotoxic gene therapies. It is especially applicable for localized cancers, such as malignant glioma because of its restricted anatomical location and absence of metastasis. The early successes in the treatment of experimental malignant gliomas in the 1990s, gave impetus to further test this approach in this devastating disease. In malignant glioma, the recurrence after conventional therapy is inevitable, due to the residual cells in the tumor bed. The fascinating feature of adenoviral HSV-tk is that it attacks the residual dividing tumor cells without affecting the non-dividing neurons and furthermore, exploits them to destroy the malignant cells via so-called bystander-effect. Clinical Phase I and II studies have shown significant survival advantage and excellent safety profile when compared to conventional treatments. Thus, the adenoviral mediated HSV-tk gene therapy is a promising new adjuvant treatment for patients with operable high-grade glioma.


Asunto(s)
Adenoviridae/genética , Antivirales/uso terapéutico , Neoplasias Encefálicas/terapia , Ganciclovir/uso terapéutico , Terapia Genética , Glioma/terapia , Simplexvirus/enzimología , Timidina Quinasa/genética , Neoplasias Encefálicas/tratamiento farmacológico , Efecto Espectador , Humanos
10.
Hum Gene Ther ; 20(8): 871-82, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19419273

RESUMEN

One of the main objectives of cancer therapy is to enhance the effectiveness of the drug by concentrating it at the target site and to minimize the undesired side effects to nontarget cells. We have previously constructed a fusion protein, Lodavin, consisting of avidin and the endocytotic part of the low-density lipoprotein receptor, and demonstrated its applicability to transient drug targeting in vivo. In this study we produced a lentiviral vector expressing this fusion protein and evaluated its safety and efficacy. The results showed that lentivirus-mediated gene transfer led to long-term avidin fusion protein expression on glioma cells and that the receptor was able to bind biotinylated compounds. Repeated administration was proven feasible and the optimal time frame(s) for administration of biotinylated therapeutic and/or imaging compounds was elucidated. Intravenous or intracranial injection of the virus into BDIX rats led to the production of antibodies against transgene (avidin), but repeated administration of the vector was unable to boost this effect. Neutralizing antibodies against the lentivirus were also detected. Furthermore, we showed that the anti-avidin antibodies did not significantly affect the ligand-binding capacity of the avidin fusion protein. The therapeutic efficacy of avidin fusion protein in tumor treatment was tested in vitro with biotinylated and nonbiotinylated nanoparticles loaded with paclitaxel. In vivo applicability of lentivirus was studied in the BDIX rat glioma model, in which high receptor expression was detected in the tumor area. The lentivirus-mediated delivery of the avidin fusion protein thus represents a potential approach for the repeated targeting of cytotoxic compounds to cancer cells.


Asunto(s)
Avidina/genética , Avidina/metabolismo , Sistemas de Liberación de Medicamentos , Vectores Genéticos/genética , Lentivirus/genética , Proteínas Recombinantes de Fusión/metabolismo , Animales , Anticuerpos/farmacología , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/inmunología , Biotina/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Vectores Genéticos/inmunología , Células HeLa , Humanos , Lentivirus/efectos de los fármacos , Pruebas de Neutralización , Ratas , Proteínas Recombinantes de Fusión/genética , Suero , Transducción Genética , Virión/efectos de los fármacos , Virión/genética
11.
Eur J Pharm Biopharm ; 70(1): 66-74, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18555675

RESUMEN

Despite recent advances in cancer therapy, many malignant tumors still lack effective treatment and the prognosis is very poor. Paclitaxel is a potential anticancer drug, but its use is limited by the facts that paclitaxel is a P-gp substrate and its aqueous solubility is poor. In this study, three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology was evaluated in vitro as a way of enhancing delivery of paclitaxel. Paclitaxel was incorporated both in biotinylated (BP) and non-biotinylated (LP) PEG-PLA nanoparticles by the interfacial deposition method. Small (mean size approximately 110 nm), spherical and slightly negatively charged (-10 mV) BP and LP nanoparticles achieving over 90% paclitaxel incorporation were obtained. The successful biotinylation of nanoparticles was confirmed in a novel streptavidin assay. BP nanoparticles were targeted in vitro to brain tumor (glioma) cells (BT4C) by three-step avidin-biotin technology using transferrin as the targeting ligand. The three-step targeting procedure increased the anti-tumoral activity of paclitaxel when compared to the commercial paclitaxel formulation Taxol and non-targeted BP and LP nanoparticles. These results indicate that the efficacy of paclitaxel against tumor cells can be increased by this three-step targeting method.


Asunto(s)
Antineoplásicos/farmacología , Avidina/metabolismo , Portadores de Fármacos , Glioma/patología , Nanopartículas , Neoplasias/patología , Paclitaxel/farmacología , Poliésteres/química , Polietilenglicoles/química , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Glioma/metabolismo , Humanos , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo , Tamaño de la Partícula , Poliésteres/metabolismo , Polietilenglicoles/metabolismo , Ratas , Solubilidad , Tecnología Farmacéutica/métodos , Factores de Tiempo , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...