Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 133160, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889836

RESUMEN

Lignin is a promising renewable source of valuable organic compounds and environmentally benign materials. However, its involvement in economic circulation and the creation of new biorefining technologies require an understanding of its chemical composition and structure. This problem can be overcome by applying mass spectrometry analytical techniques in combination with advanced chemometric methods for mass spectra processing. The present study is aimed at the development of mass defect filtering to characterize the chemical composition of lignin at the molecular level. This study introduces a novel approach involving resolution-enhanced Kendrick mass defect (REKMD) analysis for the processing of atmospheric pressure photoionization Orbitrap mass spectra of lignin. The set of priority Kendrick fractional base units was predefined in model experiments and provided a substantially expanding available mass defect range for the informative visualization of lignin mass spectra. The developed REKMD analysis strategy allowed to obtain the most complete data on all the homologous series typical of lignin and thus facilitated the interpretation and assignment of elemental compositions and structural formulas to oligomers detected in extremely complex mass spectra, including tandem ones. For the first time, the minor modifications (sulfation) of lignin obtained in ionic liquid-based biorefining processes were revealed.

2.
Polymers (Basel) ; 16(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543460

RESUMEN

In this work, electrospun polylactide fibers with new photostabilizing additives, 4-methyl-2,6-diisobornylphenol (DIBP) and N-isocamphylaniline (NICA), have been tested under the influence of UV-C radiation (254 nm). The changes in the polymers' chemical structure under UV-C radiation were revealed through the increase in absorption in the 3600-3100 cm-1 region in regard to the FTIR spectra. In the samples that were irradiated for 1 h, the stabilizing effect of the photoprotectors became most noticeable as the difference in the content of the hydroxyl groups in stabilized and the pure PLA reached a maximum. The TG-DSC method revealed that the most sensitive indicator of the irradiation effect was the glass transition temperature (Tg), which persisted after 2 h of irradiation when using photostabilizers and their combinations. The PLA/DIBP(1) and PLA/NICA(1) samples showed the best results in protecting PLA from UV-C radiation based on the Tg values; although, the mixture of DIBP and NICA was not as effective. The chemical structure of the photostabilized PLA samples was studied using NMR, GPC, and Py-GC/MS analysis. The electrospun polylactide fibers were mechanically tested and the effects of the electrospun samples on cell viability were studied.

3.
Molecules ; 28(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005319

RESUMEN

Arctic brown algae are considered a promising industrial-scale source of bioactive sub-stances as polysaccharides, polyphenols, and low-molecular secondary metabolites. Conventional technologies for their processing are focused mainly on the isolation of polysaccharides and involve the use of hazardous solvents. In the present study a "green" approach to the fractionation of brown algae biomass based on the dissolution in ionic liquids (ILs) with 1-butil-3-methylimidazolium (bmim) cation with further sequential precipitation of polysaccharides and polyphenols with acetone and water, respectively, is proposed. The effects of IL cation nature, temperature, and treatment duration on the dissolution of bladderwrack (Fucus vesiculosus), yields of the fractions, and their chemical composition were studied involving FTIR and NMR spectroscopy, as well as size-exclusion chromatography and monosaccharide analysis. It was shown that the use of bmim acetate ensures almost complete dissolution of plant material after 24 h treatment at 150 °C and separate isolation of the polysaccharide mixture (alginates, cellulose, and fucoidan) and polyphenols (phlorotannins) with the yields of ~40 and ~10%, respectively. The near-quantitative extraction of polyphenolic fraction with the weight-average molecular mass of 10-20 kDa can be achieved even under mild conditions (80-100 °C). Efficient isolation of polysaccharides requires harsh conditions. Higher temperatures contribute to an increase in fucoidan content in the polysaccharide fraction.


Asunto(s)
Fucus , Líquidos Iónicos , Phaeophyceae , Fucus/química , Biomasa , Phaeophyceae/química , Polisacáridos/química , Polifenoles/análisis , Cationes
4.
Anal Bioanal Chem ; 415(17): 3525-3534, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37222795

RESUMEN

Lignin is the second most abundant biopolymer in nature and a promising renewable feedstock for the production of aromatic compounds, composite materials, sorbents, etc. Being a complex mixture of oligomeric molecules with an irregular structure, natural lignin is an extremely difficult object to study. Its molecular level characterization requires advanced analytical techniques among which atmospheric pressure photoionization Orbitrap mass spectrometry holds a promising place. In the present study, Kendrick mass defect (KMD) analysis was proposed to facilitate the visualization and interpretation of Orbitrap mass spectra of the biopolymer on an example of Siberian pine dioxane lignin preparation. The use of the typical guaiacylpropane structure C10H12O4 as a Kendrick base unit made it possible to effectively identify oligomer series with different polymerization degrees and structurally related compounds, as well as to reliably determine the elemental compositions and structures of oligomers with high molecular weights (> 1 kDa). For the first time, KMD analysis was applied to the interpretation of the complex tandem mass spectra of lignin oligomers, rapid discrimination of the product ion series, and the establishment of the main collision-induced dissociation pathways. It was demonstrated that especially promising was the use of KMD filtering in the study of broadband fragmentation tandem mass spectra, which allows for the structural characterization of all oligomers with a particular degree of polymerization.


Asunto(s)
Lignina , Espectrometría de Masas en Tándem , Presión Atmosférica , Cefotaxima , Peso Molecular
5.
J Med Chem ; 65(12): 8227-8244, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675651

RESUMEN

We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.


Asunto(s)
Antiinflamatorios no Esteroideos , Antineoplásicos , Compuestos de Platino , Profármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Diseño de Fármacos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Compuestos de Platino/farmacología , Profármacos/farmacología
6.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267787

RESUMEN

Understanding the chemical structure of lignin in the plant phloem contributes to the systematics of lignins of various biological origins, as well as the development of plant biomass valorization. In this study, the structure of the lignin from birch phloem has been characterized using the combination of three analytical techniques, including 2D NMR, Py-GC/MS, and APPI-Orbitrap-HRMS. Due to the specifics of the phloem chemical composition, two lignin preparations were analyzed: a sample obtained as dioxane lignin (DL) by the Pepper's method and DL obtained after preliminary alkaline hydrolysis of the phloem. The obtained results demonstrated that birch phloem lignin possesses a guaiacyl-syringyl (G-S) nature with a unit ratio of (S/G) 0.7-0.9 and a higher degree of condensation compared to xylem lignin. It was indicated that its macromolecules are constructed from ß-aryl ethers followed by phenylcoumaran and resinol structures as well as terminal groups in the form of cinnamic aldehyde and dihydroconiferyl alcohol. The presence of fatty acids and flavonoids removed during alkaline treatment was established. Tandem mass spectrometry made it possible to demonstrate that the polyphenolic components are impurities and are not incorporated into the structure of lignin macromolecules. An important component of phloem lignin is lignin-carbohydrate complexes incorporating xylopyranose moieties.

7.
Anal Chim Acta ; 1179: 338836, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34535257

RESUMEN

Lignin is the second most abundant biopolymer in nature and is considered an important renewable source of aromatic compounds. One of the most promising analytical methods for molecular characterization of lignin is Orbitrap high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), proved itself in the study of lignins of various origins and their depolymerization products. In this work, the photoionization of lignin using acetone, 1,4-dioxane, and THF as solvents for the biopolymer and APPI dopants providing the generation of protonated and deprotonated molecules of lignin oligomers has been studied. The ionization conditions were optimized on the basis of the dependences of the total ion current on temperature and the flow rate of the solution into the ion source. Lignin degradation processes under APPI conditions occur mainly with the cleavage of ether ß-O-4 bonds between phenylpropane structural units, demethylation (negative ion mode), as well as the loss of water and formaldehyde (positive ion mode). Negative ion mode APPI provides a higher ionization efficiency in the region of high molecular weights, however, it is characterized by an increased fragmentation of ß-O-4 ether bonds compared to APPI(+) leading to a partial depolymerization of lignin in the ion source. The combination of APPI with Orbitrap high-resolution mass spectrometry allows obtaining mass spectra of coniferous and deciduous wood lignins with resolved fine structure and containing signals of up to 3000 oligomers in the mass range of 300-1800 Da. This can be used for comprehensive characterization of lignins at molecular level and tracking changes in biopolymer chemical composition in various processes.


Asunto(s)
Presión Atmosférica , Lignina , Espectrometría de Masas , Compuestos Orgánicos , Madera
8.
Int J Biol Macromol ; 164: 3814-3822, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898543

RESUMEN

Lignins of non-woody fast-growing plants cause high interest in recent time as a potential source of raw materials for biorefining. Studying of the lignin structure in shrubs will allow obtaining the information about processes of biosynthesis of these plants and developing methods of their delignification for bioprocessing industry. We studied the structure of raspberry dioxane lignin (Rubus idaeus L.) using various spectroscopic methods, including FT-IR and NMR (1D and 2D) for various nuclei. Also, we used gel permeation chromatography and elemental analysis. It is obtained that raspberry dioxane lignin has relatively wide polydispersity, with Mw/Mn = 2.6, and a relatively lower molecular weight (Mw = 5111 g/mol) due to low molecular weight oligolignols. 31P-NMR spectroscopy allowed to obtain that raspberry lignin belongs to GS-type. Due to 13C-NMR we calculated hypothetical empirical formula of the studied lignin and determined the substructures and ether bonds content. S/G ratio of lignin is important parameter for delignification process, and it is equal to 1.19 indicating that lignin rich in S-units will easily degrade even under mild alkaline conditions.


Asunto(s)
Lignina/química , Rubus/química , Fenómenos Químicos , Cromatografía en Gel , Lignina/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier
9.
Data Brief ; 30: 105614, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382620

RESUMEN

The data set covers the results of a study of 96 samples of peat bog soil from the fall place of the first stage of the Cyclone-3 launch vehicle contained unburned toxic rocket fuel 1,1-dimethylhydrazine (UDMH) in the European North of Russia. Soil samples were taken during a helicopter expedition to the "Koida" fall region of Plesetsk Cosmodrome operation zone in October 2015 at different distances from the center of the fall site and from different soil horizons. Samples were analyzed by liquid chromatography with amperometric detection and gas chromatography - tandem mass spectrometry. The contents of UDMH and the ten most important products of its transformations (methylhydrazine, hydrazine, 1,1,4,4-tetramethyltetrazene, formaldehyde, acetaldehyde and furaldehyde N,N-dimethylhydrazones, 1-formyl-2,2-dimethylhydrazine, N,N-dimethylformamide, N-nitrosodimethylamine, and 1-methyl-1H-1,2,4-triazole) were determined. The obtained data reflect the spatial distribution, migration and transformation of UDMH in the fall places of rocket stages under conditions of subarctic which is discussed in related research article "Migration and transformation of 1,1-dimethylhydrazine in peat bog soil of rocket stage fall site in Russian North" [1]. They can be further used for understanding the UDMH transformation pathways in soils rich in organic matter and assessment of environmental impact of space rocket activities in high latitudes.

10.
Molecules ; 25(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471064

RESUMEN

Ionic liquids (ILs) based on 1-butyl-3-methylimidazolium (bmim) cation have proved to be promising solvents for the fractionation of plant biomass with the production of cellulose and lignin. This study deals with the characterization of lignins isolated from coniferous (spruce) wood using [bmim]OAc and [bmim]MeSO4 ionic liquids and their binary mixtures with DMSO (80:20). Molecular weight distributions, functional composition, and structural features of IL lignins were studied by size-exclusion chromatography, NMR spectroscopy (1D and 2D) and atmospheric pressure photoionization high-resolution mass spectrometry. It was shown that the interaction of ILs with lignin leads to significant chemical changes in the biopolymer; a decrease in the degree of polymerization and in the content of free phenolic hydroxyl groups due to alkylation, the disappearance (in the case of [bmim]OAc) of carbonyl groups and a significant destruction of ß-O-4 bonds. The chemical reactions between lignin and 1-butyl-3-methylidazolium cation with covalent binding of ionic liquids or products of their decomposition is evidenced by the presence of a large number of nitrogen-containing oligomers in IL lignins.


Asunto(s)
Dimetilsulfóxido/química , Imidazoles/química , Líquidos Iónicos/química , Picea/química , Polímeros/química , Lignina/química
11.
Sci Total Environ ; 726: 138483, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32315849

RESUMEN

An ingress of highly toxic rocket fuel 1,1-dimethylhydrazine (UDMH) and its transformation products into environment represents a serious negative impact on the ecosystem, as well as human health. The present research demonstrates the first data on the spatial distribution and quantification of UDMH and its main transformation products (methylhydrazine, hydrazine, 1,1,4,4-tetramethyltetrazene, formaldehyde, acetaldehyde and furaldehyde N,N-dimethylhydrazones, 1-formyl-2,2-dimethylhydrazine, N,N-dimethylformamide, N-nitrosodimethylamine, and 1-methyl-1H-1,2,4-triazole) in the peat bog soil of the fall site in subarctic region. One hundred samples of peat bog soil and one sample of surface water were analyzed by the developed earlier methodology. The considerable amounts of UDMH and most of its transformation products were found at distances of not >10 m from the center of the fall site. The maximum concentration of UDMH was found near the center, where maximal permissible concentration (MPC) was exceeded 2400-fold. The greatest pollution was observed in the surface soil layer, while methylhydrazine, 1-methyl-1H-1,2,4-triazole, 1-formyl-2,2-dimethylhydrazine, formaldehyde and acetaldehyde N,N-dimethylhydrazones, and N,N-dimethylformamide were the major UDMH transformation products. With increasing distance from the center, the composition of the transformation products changes in favor of the last three compounds. Formaldehyde N,N-dimethylhydrazone and N,N-dimethylformamide are present in all soil samples and can be considered as reliable markers of contamination with rocket fuel. The surface water of the peat bog contained four UDMH transformation products in considerable concentrations, including extremely toxic N-nitrosodimethylamine. The processes of migration and transformation of UDMH in peat bog soil differ considerably from those in sandy soils. This is due to cold climate of subarctic zone, the reducing environment of peat bog, and strong binding of hydrazines to organic matter of peat, which prevents migration of pollutants and contributes to the long-term maintenance of high levels of soil pollution.

12.
Int J Biol Macromol ; 155: 656-665, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32251745

RESUMEN

As a renewable source of unique aromatic compounds, lignin attracts the attention of many researchers. However, for its successful application, it is necessary to have a clear and accurate idea of its chemical structure. Therefore, it is necessary to expand knowledge about the structure of lignins of various nature using the informative analytical methods. The aim of this study was to characterize the dioxane lignin of the Saxifraga oppositifolia L. - the northernmost angiosperm. The lignin of plants growing in the Arctic zone may differ significantly from other plants, both due to species differences and peculiarities of growing conditions. Studies were conducted on an isolated lignin preparation obtained by the Pepper's method. Analysis of Py-GC/MS data and NMR spectroscopy showed that saxifrage lignin belongs to GH-type. This is evidenced by a significant proportion of p-hydroxyphenyl units (40%), while the content of syringyl units is about 14%. The major substructures of the studied lignin were ß-aryl ether, phenylcoumaran, and resinol. It was found that the γ­carbon of the lignin side chains are partly acetylated, and forms ester bonds with the p-hydroxybenzoate structure. In addition, the NMR spectrum showed a signal of the phenylglycoside evidenced the presence of the lignin-carbohydrate complex.


Asunto(s)
Lignina/química , Tallos de la Planta/química , Saxifragaceae/química , Cromatografía de Gases y Espectrometría de Masas , Lignina/análisis , Espectroscopía de Resonancia Magnética , Estructura Molecular
13.
Chemosphere ; 228: 335-344, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31039540

RESUMEN

Existing methods for cleanup of wastewaters and soils polluted with the extremely toxic rocket fuel unsymmetrical dimethylhydrazine (UDMH) are mainly based on the treatment with various oxidative reagents. Until now, the assessment of their effectiveness was based on the residual content of UDMH and did not take into account the possibility of the formation of a large number of potentially dangerous nitrogen-containing transformation products (TPs). In this study, using the recently developed approach based on high-resolution Orbitrap mass spectrometry, the comprehensive characterization of UDMH TPs formed by the action of air oxygen and different oxidants (Fenton's reagent, KMnO4, HOCl, H2O2 in the presence of Cu2+ and [Fe (EDTA)]- catalysts) typically used to detoxify spill sites was performed. The range of the identified molecular formulas of TPs comprised 303 compounds of various classes. Among them, there is a number of major products not previously described in the literature. It was established that none of the investigated oxidative reagents ensures complete conversion of rocket fuel to safe compounds. The hydrogen peroxide based reagents, particularly H2O2 + Na [Fe (EDTA)] system currently used in Kazakhstan, give the greatest number of TPs, for many of which a toxicity was not characterized so far. The majority of the compounds found in model solutions was detected in extracts of soil from the crash site of the Proton carrier rocket, which was subjected to the on-site reagent treatment. During successive treatments, along with the decrease in the number of detectable UDMH TPs, their ratios change in favor of amines.


Asunto(s)
Dimetilhidrazinas/química , Espectrometría de Masas/métodos , Oxidantes/química , Suelo/química , Agua/química , Dimetilhidrazinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...