Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Theor Biol ; 573: 111596, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37597691

RESUMEN

COVID-19 has affected millions of people worldwide, causing illness and death, and disrupting daily life while imposing a significant social and economic burden. Vaccination is an important control measure that significantly reduces mortality if properly and efficiently distributed. In this work, an age-structured model of COVID-19 transmission, incorporating an unreported infectious compartment, is developed. Three age groups are considered: young (0-19 years), adult (20-64 years), and elderly (65+ years). The transmission rate and reporting rate are determined for each group by utilizing the number of COVID-19 cases in the National Capital Region in the Philippines. Optimal control theory is employed to identify the best vaccine allocation to different age groups. Further, three different vaccination periods are considered to reflect phases of vaccination priority groups: the first, second, and third account for the inoculation of the elderly, adult and elderly, and all three age groups, respectively. This study could guide in making informed decisions in mitigating a population-structured disease transmission under limited resources.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Humanos , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Filipinas/epidemiología , Toma de Decisiones , Vacunación
2.
Bull Math Biol ; 82(7): 96, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32676740

RESUMEN

Studies have been done using networks to represent the spread of infectious diseases in populations. For diseases with exposed individuals corresponding to a latent period, an SEIR model is formulated using an edge-based approach described by a probability generating function. The basic reproduction number is computed using the next generation matrix method and the final size of the epidemic is derived analytically. The SEIR model in this study is used to investigate the stochasticity of the SEIR dynamics. The stochastic simulations are performed applying continuous-time Gillespie's algorithm given Poisson and power law with exponential cut-off degree distributions. The resulting predictions of the SEIR model given the initial conditions match well with the stochastic simulations, validating the accuracy of the SEIR model. We varied the contribution of the disease parameters and the average degree of the network in order to investigate their effects on the spread of disease. We verified that the infection and the recovery rates show significant effects on the dynamics of the disease transmission. While the exposed rate delays the spread of the disease, increasing it towards infinity would lead to almost the same dynamics as that of an SIR case. A network with high average degree results to an early and higher peak of the epidemic compared to a network with low average degree. The results in this paper can be used as an alternative way of explaining the spread of disease and it provides implications on the control strategies applied to mitigate the disease transmission.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Epidemias/estadística & datos numéricos , Modelos Biológicos , Algoritmos , Número Básico de Reproducción/estadística & datos numéricos , Simulación por Computador , Humanos , Conceptos Matemáticos , Probabilidad , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...