Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 76(4): 823-837, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888724

RESUMEN

BACKGROUND: Traditional small-molecule chemotherapeutics usually do not distinguish tumors from healthy tissues. However, nanotechnology creates nanocarriers that selectively deliver drugs to their site of action. This work is the next step in the development of the quantum dot-ß-cyclodextrin-folic acid (QD-ß-CD-FA) platform for targeted and selected delivery of C-2028 unsymmetrical bisacridine in cancer therapy. METHODS: Herein, we report an initial biological evaluation (using flow cytometry and light microscopy) as well as cell migration analysis of QD-ß-CD(C-2028)-FA nanoconjugate and its components in the selected human lung and prostate cancer cells, as well as against their respective normal cells. RESULTS: C-2028 compound induced apoptosis, which was much stronger in cancer cells compared to normal cells. Conjugation of C-2028 with QDgreen increased cellular senescence, while the introduction of FA to the conjugate significantly decreased this process. C-2028 nanoencapsulation also reduced cell migration. Importantly, QDgreen and QDgreen-ß-CD-FA themselves did not induce any toxic responses in studied cells. CONCLUSIONS: In conclusion, the results demonstrate the high potential of a novel folic acid-targeted receptor quantum dot-ß-cyclodextrin carrier (QDgreen-ß-CD-FA) for drug delivery in cancer treatment. Nanoplatforms increased the amount of delivered compounds and demonstrated high suitability.


Asunto(s)
Apoptosis , Portadores de Fármacos , Ácido Fólico , Neoplasias Pulmonares , Neoplasias de la Próstata , Puntos Cuánticos , beta-Ciclodextrinas , Humanos , Masculino , beta-Ciclodextrinas/química , Ácido Fólico/química , Ácido Fólico/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Puntos Cuánticos/química , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Acridinas/farmacología , Acridinas/administración & dosificación , Acridinas/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos
2.
Eur J Med Chem ; 252: 115293, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958265

RESUMEN

Conjugates composed of C2-18 fatty acid (FA) residues as a molecular carrier and 5-fluorocytosine (5-FC) as an active agent, released upon the action of intracellular esterases on the ester bond between FA and "trimethyl lock" intramolecular linker, demonstrate good in vitro activity against human pathogenic yeasts of Candida spp. The minimal inhibitory concentrations (MIC) values for the most active conjugates containing caprylic (C8), capric (C10), lauric (C12), or myristic (C14) acid residues were in the 2-64 µg mL-1 range, except for these against the least susceptible Candida krusei. The least active conjugates containing C2, C16, or C18 FA were slowly hydrolyzed by esterase and probably poorly taken up by Candida cells, as found for their analogs containing a fluorescent label, Nap-NH2 instead of 5-FC.


Asunto(s)
Antifúngicos , Ácidos Grasos , Humanos , Ácidos Grasos/farmacología , Ácidos Grasos/química , Antifúngicos/farmacología , Candida , Levaduras
3.
Pharmaceutics ; 15(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678830

RESUMEN

Selective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and ß-cyclodextrin (ß-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the inclusion complex with ß-cyclodextrin molecule, due to the presence of a planar fragment in its structure. The stability of such a complex is pH-dependent. The drug release profile at different pH values and the mechanism of C-2028 release from QDs-ß-CD-FA nanoconjugates were investigated. Next, the intracellular fate of compounds and their influence on lysosomal content in the cells were also studied. Confocal Laser Scanning Microscopy studies proved that all investigated compounds were delivered to acidic organelles, the pH of which promoted an increased release of C-2028 from its nanoconjugates. Since the pH in normal cells is higher than in cancer cells, the release of C-2028 from its nanoconjugates is decreased in these cells. Additionally, we obtained the concentration profiles of C-2028 in the selected cells treated with unbound C-2028 or nanoconjugate by the HPLC analysis.

4.
Postepy Biochem ; 68(2): 196-208, 2022 06 30.
Artículo en Polaco | MEDLINE | ID: mdl-35792639

RESUMEN

Although significant advances have been made in cancer treatment, effective methods of treatment are still limited. Classical chemotherapy is one of the main cancer treatments, but it often causes many side effects that may cause non-specific drug action. This is mainly due to the lack of significant differences between cancer and normal cells as well as drug resistance. To reduce the side effects and increase the specificity and the selectivity of chemotherapeutics to cancer cells, new methods of their delivery to tumors are being sought. One of these methods is the application of nanoparticles (NPs), e.g. Quantum Dots (QDs) as drug delivery platforms. This review describes the most popular NPs in chemotherapy, including quantum dots, gold nanoparticles, dendrimers, micelles, and liposomes. The review describes also a strategy of design and synthesis of NPs, mechanism of cellular uptake, as well as intracellular degradation and toxicity of NPs.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Puntos Cuánticos , Transporte Biológico , Oro , Humanos , Neoplasias/tratamiento farmacológico
5.
Int J Mol Sci ; 23(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628316

RESUMEN

The article presents a new approach in the purification of chitosan (CS) hydrogel in order to remove a significant amount of endotoxins without changing its molecular weight and viscosity. Two variants of the method used to purify CS hydrogels from endotoxins were investigated using the PyroGene rFC Enzymatic Cascade assay kit. The effect of the CS purification method was assessed in terms of changes in the dynamic viscosity of its hydrogels, the molecular weight of the polymer, microbiological purity after refrigerated storage and cytotoxicity against L929 cells based on the ISO 10993-5:2009(E) standard. The proposed purification method 1 (M1) allows for the removal of significant amounts of endotoxins: 87.9-97.6% in relation to their initial concentration in the CS hydrogel without affecting the solution viscosity. Moreover, the final solutions were sterile and microbiologically stable during storage. The M1 purification method did not change the morphology of the L929 cells.


Asunto(s)
Quitosano , Hidrogeles , Dióxido de Carbono , Endotoxinas , Fenómenos Físicos
6.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163186

RESUMEN

Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and ß-cyclodextrin (ß-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with ß-CD. The effect of using FA in QDs-ß-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-ß-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-ß-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-ß-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.


Asunto(s)
Acridinas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/farmacología , Acridinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Nanoconjugados/química , Nanoestructuras , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Puntos Cuánticos/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología
7.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670297

RESUMEN

Nanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD-UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry and light microscopy) in lung H460 and colon HCT116 cancer cells. We show the time-dependent cellular uptake of QD-UA hybrids, which were more efficiently retained inside the cells compared to UAs alone, especially in H460 cells, which could be due to multiple endocytosis pathways. In contrast, in HCT116 cells, the hybrids were taken up only by one endocytosis mechanism. Both UAs and their hybrids induced apoptosis in H460 and HCT116 cells (to a greater extent in H460). Cells which did not die underwent senescence more efficiently following QDs-UAs treatment, compared to UAs alone. Cellular senescence was not observed in HCT116 cells following treatment with both UAs and their hybrids. Importantly, QDgreen/red themselves did not provoke toxic responses in cancer or normal cells. In conclusion, QDs are good candidates for targeted UA delivery carriers to cancer cells while protecting normal cells from toxic drug activities.

8.
ACS Appl Mater Interfaces ; 12(15): 17276-17289, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208730

RESUMEN

The use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that a unique combination of nanocrystals core components (Ag-In-Zn-S) would eliminate the toxicity problem and increase their biomedical applications. The alloyed quaternary nanocrystals Ag-In-Zn-S (QDgreen, Ag1.0In1.2Zn5.6S9.4; QDred, Ag1.0In1.0Zn1.0S3.5) were used to transport new unsymmetrical bisacridine derivatives (UAs, C-2028 and C-2045) into lung H460 and colon HCT116 cancer cells for improving the cytotoxic and antitumor action of these compounds. UAs were coupled with QD through physical adsorption. The obtained results clearly indicate that the synthesized nanoconjugates exhibited higher cytotoxic activity than unbound compounds, especially toward lung H460 cancer cells. Importantly, unsymmetrical bisacridines noncovalently attached to QD strongly protect normal cells from the drug action. It is worth pointing out that QDgreen or QDred without UAs did not influence the growth of cancer and normal cells, which is consistent with in vivo results. In noncellular systems, at pH 5.5 and 4.0, which relates to the conditions of endosomes and lysosomes, the UAs were released from QD-UAs nanoconjugates. An increase of total lysosomes content was observed in H460 cells treated with QDs-UAs which can affect the release of the UAs from the conjugates. Moreover, confocal laser scanning microscopy analyses revealed that QD-UAs nanoconjugates enter H460 cells more efficiently than to HCT116 and normal cells, which may be the reason for their higher cytotoxicity against lung cancer. Summarizing, the noncovalent attachment of UAs to QDs increases the therapeutic efficiency of UAs by improving cytotoxicity toward lung H460 cancer cells and having protecting effects on normal cells.


Asunto(s)
Acridinas/química , Antineoplásicos/química , Puntos Cuánticos/química , Acridinas/metabolismo , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Plata/química , Sulfuros/química , Compuestos de Zinc/química
9.
Molecules ; 24(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835739

RESUMEN

A new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling capacity, solubility), and biological (antimicrobial and cytotoxic) properties. Chitosan in the composites was a component for obtaining their foamed form with 7.4 to 22.7 times lower density compared to the neat PLA and high porosity also confirmed by the SEM. The foams had a hardness in the range of 70-440 kPa. The FT-IR analysis confirmed no new chemical bonds between the sponge ingredients. Other results showed low sorption capacity (2.5-7.2 g/g) and solubility of materials (less than 0.2%). The obtained foams had the lower Tg value and improved ability of crystallization compared to neat PLA. The addition of chitosan provides the bacteriostatic and bactericidal properties against Escherichia coli and Staphylococcus aureus. Biocompatibility studies have shown that the materials obtained are not cytotoxic to the L929 cell line.


Asunto(s)
Antibacterianos/síntesis química , Quitosano/química , Poliésteres/química , Sustancias Viscoelásticas/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Dióxido de Carbono/química , Línea Celular , Escherichia coli/efectos de los fármacos , Liofilización , Humanos , Polietilenglicoles/química , Porosidad , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Sustancias Viscoelásticas/química , Sustancias Viscoelásticas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA