Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320092

RESUMEN

It has been known adipocytes increase p53 expression and activity in obesity, however, only canonical p53 functions (i.e. senescence and apoptosis) are attributed to inflammation-associated metabolic phenotypes. Whether or not p53 is directly involved in mature adipocyte metabolic regulation remains unclear. Here we show p53 protein expression can be up-regulated in adipocytes by nutrient starvation without activating cell senescence, apoptosis, or a death-related p53 canonical pathway. Inducing the loss of p53 in mature adipocytes significantly reprograms energy metabolism and this effect is primarily mediated through a AMP-activated protein kinase (AMPK) pathway and a novel downstream transcriptional target, lysosomal acid lipase (LAL). The pathophysiological relevance is further demonstrated in a conditional and adipocyte-specific p53 knockout mouse model. Overall, these data support a non-canonical p53 function in the regulation of adipocyte energy homeostasis and indicate that the dysregulation of this pathway may be involved in developing metabolic dysfunction in obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/metabolismo , Metabolismo Energético/fisiología , Obesidad/patología , Proteína p53 Supresora de Tumor/metabolismo , Células 3T3-L1 , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Reprogramación Celular , Edición Génica/métodos , Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño/genética , Inanición/metabolismo , Esterol Esterasa/metabolismo , Proteína p53 Supresora de Tumor/genética
2.
J Biol Chem ; 294(27): 10544-10552, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31126986

RESUMEN

Cavin-1/polymerase I and transcript release factor (PTRF) is a requisite component of caveolae, small plasma membrane invaginations that are highly abundant in adipocytes. Cavin-1 is a dynamic molecule whose dissociation from caveolae plays an important role in mechanoprotection and rRNA synthesis. In the former situation, the acute dissociation of cavin-1 from caveolae allows cell membrane expansion that occurs upon insulin-aided lipid uptake into the fat cells. Cavin-1 dissociation from caveolae and membrane flattening alters the cytoskeleton and the interaction of plasma membrane proteins with the extracellular matrix through interactions with focal adhesion structures. Here, using cavin-1 knockout mice, subcellular fractionation, and immunoblotting methods, we addressed the relationship of cavin-1 with focal adhesion complexes following nutritional stimulation. We found that cavin-1 is acutely translocated to focal complex compartments upon insulin stimulation, where it regulates focal complex formation through an interaction with paxillin. We found that loss of cavin-1 impairs focal complex remodeling and focal adhesion formation and causes a mechanical stress response, concomitant with activation of proinflammatory and senescence/apoptosis pathways. We conclude that cavin-1 plays key roles in dynamic remodeling of focal complexes upon metabolic stimulation. This mechanism also underlies the crucial role of caveolae in the long-term healthy expansion of the adipocyte.


Asunto(s)
Caveolina 1/metabolismo , Dieta Alta en Grasa , Adhesiones Focales/efectos de los fármacos , Inflamación/metabolismo , Insulina/farmacología , Células 3T3-L1 , Animales , Caveolas/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Adhesiones Focales/metabolismo , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Paxillin/metabolismo , Unión Proteica , Transducción de Señal , Estrés Mecánico
3.
Nat Commun ; 9(1): 168, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330478

RESUMEN

Effective suppression of JAK-STAT signalling by the inducible inhibitor "suppressor of cytokine signalling 3" (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3-interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Animales , Caveolas/fisiología , Eliminación de Gen , Regulación de la Expresión Génica , Células HEK293 , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Proteínas de Unión al ARN/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética
4.
JCI Insight ; 2(5): e91023, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28289716

RESUMEN

ice and humans lacking the caveolae component polymerase I transcription release factor (PTRF, also known as cavin-1) exhibit lipo- and muscular dystrophy. Here we describe the molecular features underlying the muscle phenotype for PTRF/cavin-1 null mice. These animals had a decreased ability to exercise, and exhibited muscle hypertrophy with increased muscle fiber size and muscle mass due, in part, to constitutive activation of the Akt pathway. Their muscles were fibrotic and exhibited impaired membrane integrity accompanied by an apparent compensatory activation of the dystrophin-glycoprotein complex along with elevated expression of proteins involved in muscle repair function. Ptrf deletion also caused decreased mitochondrial function, oxygen consumption, and altered myofiber composition. Thus, in addition to compromised adipocyte-related physiology, the absence of PTRF/cavin-1 in mice caused a unique form of muscular dystrophy with a phenotype similar or identical to that seen in humans lacking this protein. Further understanding of this muscular dystrophy model will provide information relevant to the human situation and guidance for potential therapies.


Asunto(s)
Proteínas de la Membrana/genética , Distrofias Musculares/genética , Proteínas de Unión al ARN/genética , Animales , Línea Celular , Humanos , Ratones , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/patología
6.
Elife ; 52016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27528195

RESUMEN

Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae-independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism.


Asunto(s)
Metabolismo Energético , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , ARN Ribosómico/biosíntesis , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Adipocitos/fisiología , Animales , Células Cultivadas , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Procesamiento Proteico-Postraduccional
7.
Mol Metab ; 4(11): 758-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26629401

RESUMEN

OBJECTIVE: Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). METHODS: Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. RESULTS: Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. CONCLUSION: These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion.

8.
J Cell Biol ; 210(5): 833-49, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26323694

RESUMEN

Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system.


Asunto(s)
Caveolinas/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Actividad Motora/fisiología , Fibras Musculares Esqueléticas/fisiología , Proteínas de Unión al ARN/metabolismo , Estrés Mecánico , Animales , Caveolinas/genética , Tomografía con Microscopio Electrónico , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Distrofias Musculares/genética , Distrofias Musculares/patología , Proteínas de Unión al ARN/genética , Sarcolema/genética , Sarcolema/patología , Pez Cebra
9.
Nat Commun ; 6: 7808, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26245716

RESUMEN

Marrow adipose tissue (MAT) accumulates in diverse clinical conditions but remains poorly understood. Here we show region-specific variation in MAT adipocyte development, regulation, size, lipid composition, gene expression and genetic determinants. Early MAT formation in mice is conserved, whereas later development is strain dependent. Proximal, but not distal tibial, MAT is lost with 21-day cold exposure. Rat MAT adipocytes from distal sites have an increased proportion of monounsaturated fatty acids and expression of Scd1/Scd2, Cebpa and Cebpb. Humans also have increased distal marrow fat unsaturation. We define proximal 'regulated' MAT (rMAT) as single adipocytes interspersed with active haematopoiesis, whereas distal 'constitutive' MAT (cMAT) has low haematopoiesis, contains larger adipocytes, develops earlier and remains preserved upon systemic challenges. Loss of rMAT occurs in mice with congenital generalized lipodystrophy type 4, whereas both rMAT and cMAT are preserved in mice with congenital generalized lipodystrophy type 3. Consideration of these MAT subpopulations may be important for future studies linking MAT to bone biology, haematopoiesis and whole-body metabolism.


Asunto(s)
Adipocitos/fisiología , Células de la Médula Ósea/fisiología , Médula Ósea/crecimiento & desarrollo , Adipocitos/citología , Animales , Células de la Médula Ósea/citología , Frío , Ácidos Grasos/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Proteínas de la Membrana/fisiología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Espectroscopía de Protones por Resonancia Magnética , Proteínas de Unión al ARN/fisiología , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo
10.
PLoS One ; 9(7): e102935, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036884

RESUMEN

The cavins are a family of proteins associated with caveolae, cavin-1, -2 and -3 being widely expressed while cavin-4 is restricted to striated muscle. Deletion of cavin-1 results in phenotypes including metabolic changes consistent with adipocyte dysfunction, and caveolae are completely absent. Deletion of cavin-2 causes tissue-specific loss of caveolae. The consequences of cavin-3 deletion are less clear, as there are divergent data on the abundance of caveolae in cavin-3 null mice. Here we examine the consequences of cavin-3 deficiency in vivo by making cavin-3 knockout mice. We find that loss of cavin-3 has minimal or no effects on the levels of other caveolar proteins, does not appear to play a major role in formation of protein complexes important for caveolar morphogenesis, and has no significant effect on caveolae abundance. Cavin-3 null mice have the same body weight and fat mass as wild type animals at ages 8 through 30 weeks on both normal chow and high fat diets. Likewise, the two mouse strains exhibit identical glucose tolerance tests on both diets. Microarray analysis from adipose tissue shows that the changes in mRNA expression between cavin-3 null and wild type mouse are minimal. We conclude that cavin-3 is not absolutely required for making caveolae, and suggest that the mechanistic link between cavin-3 and metabolic regulation remains uncertain.


Asunto(s)
Composición Corporal/genética , Caveolas/metabolismo , Glucosa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Peso Corporal/genética , Dieta Alta en Grasa , Femenino , Glucosa/genética , Prueba de Tolerancia a la Glucosa/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis/genética , ARN Mensajero/genética
11.
J Biol Chem ; 289(12): 8473-83, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24509860

RESUMEN

Mice and humans lacking caveolae due to gene knock-out or inactivating mutations of cavin-1/PTRF have numerous pathologies including markedly aberrant fuel metabolism, lipodystrophy, and muscular dystrophy. We characterized the physiologic/metabolic profile of cavin-1 knock-out mice and determined that they were lean because of reduced white adipose depots. The knock-out mice were resistant to diet-induced obesity and had abnormal lipid metabolism in the major metabolic organs of white and brown fat and liver. Epididymal white fat cells from cavin-1-null mice were small and insensitive to insulin and ß-adrenergic agonists resulting in reduced adipocyte lipid storage and impaired lipid tolerance. At the molecular level, the lipolytic defects in white fat were caused by impaired perilipin phosphorylation, and the reduced triglyceride accumulation was caused by decreased fatty acid uptake and incorporation as well as the virtual absence of insulin-stimulated glucose transport. The livers of cavin-1-null mice were mildly steatotic and did not accumulate more lipid after high-fat feeding. The brown adipose tissues of cavin-1-null mice exhibited decreased mitochondria protein expression, which was restored upon high fat feeding. Taken together, these data suggest that dysfunction in fat, muscle, and liver metabolism in cavin-1-null mice causes a pleiotropic phenotype, one apparently identical to that of humans lacking caveolae in all tissues.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Eliminación de Gen , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Animales , Caveolas/metabolismo , Caveolas/patología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al ARN , Triglicéridos/metabolismo
12.
Cell Rep ; 4(2): 238-47, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850288

RESUMEN

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Caveolina 1/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Animales , Ratones , Oxidación-Reducción , Transducción de Señal
13.
Mol Cell Biol ; 33(8): 1503-14, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23382078

RESUMEN

The low-density lipoprotein receptor (LDLR) is a critical determinant of plasma cholesterol levels that internalizes lipoprotein cargo via clathrin-mediated endocytosis. Here, we show that the E3 ubiquitin ligase IDOL stimulates a previously unrecognized, clathrin-independent pathway for LDLR internalization. Real-time single-particle tracking and electron microscopy reveal that IDOL is recruited to the plasma membrane by LDLR, promotes LDLR internalization in the absence of clathrin or caveolae, and facilitates LDLR degradation by shuttling it into the multivesicular body (MVB) protein-sorting pathway. The IDOL-dependent degradation pathway is distinct from that mediated by PCSK9 as only IDOL employs ESCRT (endosomal-sorting complex required for transport) complexes to recognize and traffic LDLR to lysosomes. Small interfering RNA (siRNA)-mediated knockdown of ESCRT-0 (HGS) or ESCRT-I (TSG101) components prevents IDOL-mediated LDLR degradation. We further show that USP8 acts downstream of IDOL to deubiquitinate LDLR and that USP8 is required for LDLR entry into the MVB pathway. These results provide key mechanistic insights into an evolutionarily conserved pathway for the control of lipoprotein receptor expression and cellular lipid uptake.


Asunto(s)
Endocitosis , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Fosfoproteínas/metabolismo , Receptores de LDL/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Clatrina/metabolismo , Proteínas de Unión al ADN/genética , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Ratones , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proproteína Convertasa 9 , Proproteína Convertasas , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño , Receptores de LDL/genética , Serina Endopeptidasas , Factores de Transcripción/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
PLoS One ; 7(8): e43041, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912783

RESUMEN

Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.


Asunto(s)
Caveolina 1/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Movimiento Celular/genética , Polaridad Celular/genética , Quimiotaxis/fisiología , Ratones , Microscopía Fluorescente , Microscopía por Video , Células 3T3 NIH , Neuropéptidos/metabolismo , Proteínas de Unión al ARN , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
15.
PLoS One ; 7(4): e34516, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22493697

RESUMEN

Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-ß-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity.


Asunto(s)
Adipocitos/metabolismo , Caveolas/metabolismo , Colesterol/deficiencia , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Caveolas/efectos de los fármacos , Fibroblastos , Vectores Genéticos , Células HEK293 , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lentivirus , Ratones , Cultivo Primario de Células , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Transducción de Señal/efectos de los fármacos , beta-Ciclodextrinas/farmacología
16.
PLoS One ; 7(3): e32655, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403691

RESUMEN

PV1 protein is an essential component of stomatal and fenestral diaphragms, which are formed at the plasma membrane of endothelial cells (ECs), on structures such as caveolae, fenestrae and transendothelial channels. Knockout of PV1 in mice results in in utero and perinatal mortality. To be able to interpret the complex PV1 knockout phenotype, it is critical to determine whether the formation of diaphragms is the only cellular role of PV1. We addressed this question by measuring the effect of complete and partial removal of structures capable of forming diaphragms on PV1 protein level. Removal of caveolae in mice by knocking out caveolin-1 or cavin-1 resulted in a dramatic reduction of PV1 protein level in lungs but not kidneys. The magnitude of PV1 reduction correlated with the abundance of structures capable of forming diaphragms in the microvasculature of these organs. The absence of caveolae in the lung ECs did not affect the transcription or translation of PV1, but it caused a sharp increase in PV1 protein internalization rate via a clathrin- and dynamin-independent pathway followed by degradation in lysosomes. Thus, PV1 is retained on the cell surface of ECs by structures capable of forming diaphragms, but undergoes rapid internalization and degradation in the absence of these structures, suggesting that formation of diaphragms is the only role of PV1.


Asunto(s)
Proteínas Portadoras/metabolismo , Caveolas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Diafragma/citología , Pulmón/citología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Transcripción Genética
17.
Clin Lipidol ; 6(1): 49-58, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21625349

RESUMEN

The abundance of caveolae in adipocytes suggests a possible cell-specific role for these structures, and because these cells take up and release fatty acids as their quantitatively most robust activity, modulation of fatty acid movement is one such role that is supported by substantial in vitro and in vivo data. In addition, caveolae are particularly rich in cholesterol and sphingolipids, and indeed, fat cells harbor more cholesterol than any other tissue. In this article, we review the role of adipocyte caveolae with regard to these important lipid classes.

18.
J Lipid Res ; 52(8): 1526-32, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21652731

RESUMEN

Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains.


Asunto(s)
Adipocitos/metabolismo , Caveolas/metabolismo , Caveolina 1 , Ácidos Grasos/efectos adversos , Lipólisis/efectos de los fármacos , Adipocitos/citología , Animales , Western Blotting , Caveolas/efectos de los fármacos , Caveolina 1/genética , Caveolina 1/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Detergentes/efectos adversos , Detergentes/farmacología , Dislipidemias/metabolismo , Dislipidemias/patología , Electroforesis en Gel de Poliacrilamida , Embrión de Mamíferos/citología , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Expresión Génica , L-Lactato Deshidrogenasa/análisis , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
19.
Trends Endocrinol Metab ; 22(8): 318-24, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21592817

RESUMEN

Caveolae are subdomains of the eukaryotic cell surface, so named because they resemble little caves, being small omega-shaped invaginations of the plasma membrane into the cytosol. They are present in many cell types, and are especially abundant in adipocytes, in which they have been implicated as playing a role in lipid metabolism. Thus, mice and humans lacking caveolae have small adipocytes and exhibit lipodystrophies along with other physiological abnormalities. In this review, we examine the evidence supporting the role of caveolae in adipocyte lipid metabolism in the context of the protein and lipid composition of these structures.


Asunto(s)
Adipocitos/metabolismo , Caveolas/metabolismo , Metabolismo de los Lípidos/fisiología , Animales , Transporte Biológico/fisiología , Caveolinas/metabolismo , Humanos , Ratones , Modelos Biológicos
20.
Traffic ; 12(6): 665-71, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21306486

RESUMEN

Translocation of Glut4 to the plasma membrane of fat and skeletal muscle cells is mediated by specialized insulin-responsive vesicles (IRVs), whose protein composition consists primarily of glucose transporter isoform 4 (Glut4), insulin-responsive amino peptidase (IRAP), sortilin, lipoprotein receptor-related protein 1 (LRP1) and v-SNAREs. How can these proteins find each other in the cell and form functional vesicles after endocytosis from the plasma membrane? We are proposing a model according to which the IRV component proteins are internalized into sorting endosomes and are delivered to the IRV donor compartment(s), recycling endosomes and/or the trans-Golgi network (TGN), by cellugyrin-positive transport vesicles. The cytoplasmic tails of Glut4, IRAP, LRP1 and sortilin play an important targeting role in this process. Once these proteins arrive in the donor compartment, they interact with each other via their lumenal domains. This facilitates clustering of the IRV proteins into an oligomeric complex, which can then be distributed from the donor membranes to the IRV as a single entity with the help of adaptors, such as Golgi-localized, gamma-adaptin ear-containing, ARF-binding (GGA).


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Cistinil Aminopeptidasa/metabolismo , Insulina/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...