Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(21): 9677-9682, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37902816

RESUMEN

In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.


Asunto(s)
Impresión Molecular , Nanopartículas , Polímeros Impresos Molecularmente , Epítopos , Polímeros/química , Nanopartículas/química , Receptores ErbB/metabolismo
2.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365575

RESUMEN

Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports the solid-phase synthesis of nanoMIPs and an investigation of their biodistribution, clearance and cytotoxicity in a rat model following both intravenous and oral administration. These nanoMIPs were found in each harvested tissue type, including brain tissue, implying their ability to cross the blood-brain barrier. The nanoMIPs were cleared from the body via both faeces and urine. Furthermore, we describe an immunogenicity study in mice, demonstrating that nanoMIPs specific for a cell surface protein showed moderate adjuvant properties, whilst those imprinted for a scrambled peptide showed no such behaviour. Given their ability to access all tissue types and their relatively low cytotoxicity, these results pave the way for in vivo applications of nanoMIPs.

3.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458345

RESUMEN

Current state-of-the-art techniques for the solid phase synthesis of molecularly imprinted polymer (MIP) nanoparticles typically rely on amino silanes for the immobilisation of template molecules prior to polymerisation. An investigation into commonly used amino silanes identified a number of problematic side reactions which negatively affect the purity and affinity of these polymers. Iodo silanes are presented as a superior alternative in a case study describing the synthesis of MIPs against epitopes of a common cancer biomarker, epidermal growth factor receptor (EGFR). The proposed iodo silane outperformed the amino silane by all metrics tested, showing high purity and specificity, and nanomolar affinity for the target peptide.

4.
Trends Biotechnol ; 38(4): 368-387, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31677857

RESUMEN

Since their conception 50 years ago, molecularly imprinted polymers (MIPs) have seen extensive development both in terms of synthetic routes and applications. Cells are perhaps the most challenging target for molecular imprinting. Although early work was based almost entirely around microprinting methods, recent developments have shifted towards epitope imprinting to generate MIP nanoparticles (NPs). Simultaneously, the development of techniques such as solid phase MIP synthesis has solved many historic issues of MIP production. This review briefly describes various approaches used in cell imprinting with a focus on applications of the created materials in imaging, drug delivery, diagnostics, and tissue engineering.


Asunto(s)
Epítopos/química , Impresión Molecular/métodos , Polímeros Impresos Molecularmente/síntesis química , Nanopartículas/química , Rastreo Celular , Diagnóstico por Imagen , Sistemas de Liberación de Medicamentos , Humanos , Imagen Molecular , Ingeniería de Tejidos
5.
J Mol Recognit ; 33(4): e2824, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31742810

RESUMEN

A library of 17 nanoparticles made of acrylate and methacrylate copolymers is prepared, characterized, and screened against six epitopes of adeno-associated viruses (AAV)-neutralizing antibodies to assess their affinity and specificity. Peptide epitopes are immobilized onto the surface of glass beads, packed in filtration microplates, and incubated with fluorescein-labelled nanoparticles. Following intense washing, the affinity of nanoparticles to immobilized epitopes is assessed by measuring the fluorescence of captured nanoparticles. The results show that polar monomers, acrylic acid in particular, have a positive impact on polymer affinity towards all peptides used in this study. The presence of hydrophobic monomers, on other hand, has a negative impact on polymer binding. The composition of peptides used in this study has no noticeable impact on the affinity of synthesized nanoparticles. The affinity of nanoparticles with the highest affinity to peptide targets does not exceed millimolar level. Overall, it is found that the synthesized library showed modest affinity but lacked specificity, which should be further "tuned," for example, by using molecular imprinting to achieve an acceptable level of affinity and specificity for practical application.


Asunto(s)
Epítopos/metabolismo , Nanopartículas/química , Polímeros/química , Anticuerpos Neutralizantes/metabolismo , Dependovirus/patogenicidad , Epítopos/genética , Impresión Molecular
6.
Langmuir ; 36(1): 279-283, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31829602

RESUMEN

An array of 4000 defined and addressable tripeptides on a polymer-coated glass slide is used to synthesize molecularly imprinted polymer (MIP) nanoparticles. This work is undertaken to systematically probe the impact of the peptide sequence on the ability to generate affinity MIPs. The polymer affinity is assessed by measuring the fluorescence of bound MIP nanoparticles at each peptide spot on the surface after washing the array to remove any low-affinity polymer. The generic composition commonly used in the preparation of MIPs against proteins seems to be equally suitable for imprinting hydrophobic and hydrophilic tripeptides. The amino acids frequently contributing to the formation of high-affinity MIPs include T, F, D, N, Y, W, and P. The amino acids that rarely contribute to the formation of high-affinity interactions with MIPs are G, V, A, L, I, and M. These observations are confirmed by computational modeling. The basic technique proposed here may be applicable in optimizing polymer compositions for the production of high-affinity MIPs or, more specifically, for the selection of appropriate amino acid sequences when peptide epitopes are used instead of whole protein imprinting.


Asunto(s)
Polímeros Impresos Molecularmente/síntesis química , Péptidos/química , Simulación de Dinámica Molecular , Polímeros Impresos Molecularmente/química
7.
Sci Rep ; 7(1): 11537, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912505

RESUMEN

Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

8.
Anal Chem ; 84(4): 2038-43, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22264028

RESUMEN

A new format for the microtiter plate-based assays was proposed. The novelty involves the use of disk-shaped inserts for immobilization of biological and chemical reagents. The internal opening of the disks allows measurements of the reactions by standard microtiter plate readers without any additional steps involving liquid handling. Ideally the plate end-users just have to add the sample and take the measurement without any need of multiple reagent additions or transfer of the liquid to a different plate. The novel assay format also allows handling of reagents which are not soluble in an aqueous environment. As a proof of concept we describe here several model reactions which are compatible with microtiter plate format, such as monitoring enzymatic reactions catalyzed by glucose oxidase (GOx) and urease, measurements of proteins by BCA assay, analysis of pH, and concentration of antioxidants. The "mix and match" approach in the disk-shape format allows multiplexing and could be particularly useful for high throughput screening. One of the potential application areas for this novel assay format could be in a multianalyte system for measurement of clinically relevant analytes in primary care.


Asunto(s)
Bioensayo , Glucosa Oxidasa/análisis , Microquímica/métodos , Miniaturización/instrumentación , Ureasa/análisis , Antioxidantes/metabolismo , Aspergillus niger/enzimología , Fabaceae/enzimología , Concentración de Iones de Hidrógeno , Indicadores y Reactivos/metabolismo , Miniaturización/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...