Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 9(6): 805-17, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27330556

RESUMEN

Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

2.
Ecology ; 90(11): 3222-32, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19967877

RESUMEN

Wolverines (Gulo gulo) are one of the rarest carnivores in the contiguous United States. Effective population sizes in Montana, Idaho, and Wyoming, where most of the wolverines in the contiguous United States exist, were calculated to be 35 (credible limits, 28 52) suggesting low abundance. Landscape features that influence wolverine population substructure and gene flow are largely unknown. Recent work has identified strong associations between areas with persistent spring snow and wolverine presence and range. We tested whether a dispersal model in which wolverines prefer to disperse through areas characterized by persistent spring snow cover produced least-cost paths among all individuals that correlated with genetic distance among individuals. Models simulating large preferences for dispersing within areas characterized by persistent spring snow explained the data better than a model based on Euclidean distance. Partial Mantel tests separating Euclidean distance from spring snow-cover-based effects indicated that Euclidean distance was not significant in describing patterns of genetic distance. Because these models indicated that successful dispersal paths followed areas characterized by spring snow cover, we used these understandings to derive empirically based least-cost corridor maps in the U.S. Rocky Mountains. These corridor maps largely explain previously published population subdivision patterns based on mitochondrial DNA and indicate that natural colonization of the southern Rocky Mountains by wolverines will be difficult but not impossible.


Asunto(s)
Clima , Flujo Génico , Mustelidae/genética , Animales , Demografía , Ecosistema , Variación Genética , Idaho , Montana , Estaciones del Año , Wyoming
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...