Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Radiol Artif Intell ; 6(3): e230079, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38477661

RESUMEN

Purpose To evaluate the impact of an artificial intelligence (AI) assistant for lung cancer screening on multinational clinical workflows. Materials and Methods An AI assistant for lung cancer screening was evaluated on two retrospective randomized multireader multicase studies where 627 (141 cancer-positive cases) low-dose chest CT cases were each read twice (with and without AI assistance) by experienced thoracic radiologists (six U.S.-based or six Japan-based radiologists), resulting in a total of 7524 interpretations. Positive cases were defined as those within 2 years before a pathology-confirmed lung cancer diagnosis. Negative cases were defined as those without any subsequent cancer diagnosis for at least 2 years and were enriched for a spectrum of diverse nodules. The studies measured the readers' level of suspicion (on a 0-100 scale), country-specific screening system scoring categories, and management recommendations. Evaluation metrics included the area under the receiver operating characteristic curve (AUC) for level of suspicion and sensitivity and specificity of recall recommendations. Results With AI assistance, the radiologists' AUC increased by 0.023 (0.70 to 0.72; P = .02) for the U.S. study and by 0.023 (0.93 to 0.96; P = .18) for the Japan study. Scoring system specificity for actionable findings increased 5.5% (57% to 63%; P < .001) for the U.S. study and 6.7% (23% to 30%; P < .001) for the Japan study. There was no evidence of a difference in corresponding sensitivity between unassisted and AI-assisted reads for the U.S. (67.3% to 67.5%; P = .88) and Japan (98% to 100%; P > .99) studies. Corresponding stand-alone AI AUC system performance was 0.75 (95% CI: 0.70, 0.81) and 0.88 (95% CI: 0.78, 0.97) for the U.S.- and Japan-based datasets, respectively. Conclusion The concurrent AI interface improved lung cancer screening specificity in both U.S.- and Japan-based reader studies, meriting further study in additional international screening environments. Keywords: Assistive Artificial Intelligence, Lung Cancer Screening, CT Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Inteligencia Artificial , Detección Precoz del Cáncer , Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Japón , Estados Unidos/epidemiología , Estudios Retrospectivos , Detección Precoz del Cáncer/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Sensibilidad y Especificidad , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
2.
Lancet Digit Health ; 6(2): e126-e130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278614

RESUMEN

Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components-GPPEs-from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended.


Asunto(s)
Atención a la Salud , Aprendizaje Automático , Humanos , Sesgo , Algoritmos
3.
JAMA Netw Open ; 6(1): e2248685, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598790

RESUMEN

Importance: Fetal ultrasonography is essential for confirmation of gestational age (GA), and accurate GA assessment is important for providing appropriate care throughout pregnancy and for identifying complications, including fetal growth disorders. Derivation of GA from manual fetal biometry measurements (ie, head, abdomen, and femur) is operator dependent and time-consuming. Objective: To develop artificial intelligence (AI) models to estimate GA with higher accuracy and reliability, leveraging standard biometry images and fly-to ultrasonography videos. Design, Setting, and Participants: To improve GA estimates, this diagnostic study used AI to interpret standard plane ultrasonography images and fly-to ultrasonography videos, which are 5- to 10-second videos that can be automatically recorded as part of the standard of care before the still image is captured. Three AI models were developed and validated: (1) an image model using standard plane images, (2) a video model using fly-to videos, and (3) an ensemble model (combining both image and video models). The models were trained and evaluated on data from the Fetal Age Machine Learning Initiative (FAMLI) cohort, which included participants from 2 study sites at Chapel Hill, North Carolina (US), and Lusaka, Zambia. Participants were eligible to be part of this study if they received routine antenatal care at 1 of these sites, were aged 18 years or older, had a viable intrauterine singleton pregnancy, and could provide written consent. They were not eligible if they had known uterine or fetal abnormality, or had any other conditions that would make participation unsafe or complicate interpretation. Data analysis was performed from January to July 2022. Main Outcomes and Measures: The primary analysis outcome for GA was the mean difference in absolute error between the GA model estimate and the clinical standard estimate, with the ground truth GA extrapolated from the initial GA estimated at an initial examination. Results: Of the total cohort of 3842 participants, data were calculated for a test set of 404 participants with a mean (SD) age of 28.8 (5.6) years at enrollment. All models were statistically superior to standard fetal biometry-based GA estimates derived from images captured by expert sonographers. The ensemble model had the lowest mean absolute error compared with the clinical standard fetal biometry (mean [SD] difference, -1.51 [3.96] days; 95% CI, -1.90 to -1.10 days). All 3 models outperformed standard biometry by a more substantial margin on fetuses that were predicted to be small for their GA. Conclusions and Relevance: These findings suggest that AI models have the potential to empower trained operators to estimate GA with higher accuracy.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Embarazo , Femenino , Edad Gestacional , Reproducibilidad de los Resultados , Zambia , Ultrasonografía
4.
Radiology ; 306(1): 124-137, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066366

RESUMEN

Background The World Health Organization (WHO) recommends chest radiography to facilitate tuberculosis (TB) screening. However, chest radiograph interpretation expertise remains limited in many regions. Purpose To develop a deep learning system (DLS) to detect active pulmonary TB on chest radiographs and compare its performance to that of radiologists. Materials and Methods A DLS was trained and tested using retrospective chest radiographs (acquired between 1996 and 2020) from 10 countries. To improve generalization, large-scale chest radiograph pretraining, attention pooling, and semisupervised learning ("noisy-student") were incorporated. The DLS was evaluated in a four-country test set (China, India, the United States, and Zambia) and in a mining population in South Africa, with positive TB confirmed with microbiological tests or nucleic acid amplification testing (NAAT). The performance of the DLS was compared with that of 14 radiologists. The authors studied the efficacy of the DLS compared with that of nine radiologists using the Obuchowski-Rockette-Hillis procedure. Given WHO targets of 90% sensitivity and 70% specificity, the operating point of the DLS (0.45) was prespecified to favor sensitivity. Results A total of 165 754 images in 22 284 subjects (mean age, 45 years; 21% female) were used for model development and testing. In the four-country test set (1236 subjects, 17% with active TB), the receiver operating characteristic (ROC) curve of the DLS was higher than those for all nine India-based radiologists, with an area under the ROC curve of 0.89 (95% CI: 0.87, 0.91). Compared with these radiologists, at the prespecified operating point, the DLS sensitivity was higher (88% vs 75%, P < .001) and specificity was noninferior (79% vs 84%, P = .004). Trends were similar within other patient subgroups, in the South Africa data set, and across various TB-specific chest radiograph findings. In simulations, the use of the DLS to identify likely TB-positive chest radiographs for NAAT confirmation reduced the cost by 40%-80% per TB-positive patient detected. Conclusion A deep learning method was found to be noninferior to radiologists for the determination of active tuberculosis on digital chest radiographs. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by van Ginneken in this issue.


Asunto(s)
Aprendizaje Profundo , Tuberculosis Pulmonar , Humanos , Femenino , Persona de Mediana Edad , Masculino , Radiografía Torácica/métodos , Estudios Retrospectivos , Radiografía , Tuberculosis Pulmonar/diagnóstico por imagen , Radiólogos , Sensibilidad y Especificidad
5.
Commun Med (Lond) ; 2: 128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249461

RESUMEN

Background: Fetal ultrasound is an important component of antenatal care, but shortage of adequately trained healthcare workers has limited its adoption in low-to-middle-income countries. This study investigated the use of artificial intelligence for fetal ultrasound in under-resourced settings. Methods: Blind sweep ultrasounds, consisting of six freehand ultrasound sweeps, were collected by sonographers in the USA and Zambia, and novice operators in Zambia. We developed artificial intelligence (AI) models that used blind sweeps to predict gestational age (GA) and fetal malpresentation. AI GA estimates and standard fetal biometry estimates were compared to a previously established ground truth, and evaluated for difference in absolute error. Fetal malpresentation (non-cephalic vs cephalic) was compared to sonographer assessment. On-device AI model run-times were benchmarked on Android mobile phones. Results: Here we show that GA estimation accuracy of the AI model is non-inferior to standard fetal biometry estimates (error difference -1.4 ± 4.5 days, 95% CI -1.8, -0.9, n = 406). Non-inferiority is maintained when blind sweeps are acquired by novice operators performing only two of six sweep motion types. Fetal malpresentation AUC-ROC is 0.977 (95% CI, 0.949, 1.00, n = 613), sonographers and novices have similar AUC-ROC. Software run-times on mobile phones for both diagnostic models are less than 3 s after completion of a sweep. Conclusions: The gestational age model is non-inferior to the clinical standard and the fetal malpresentation model has high AUC-ROCs across operators and devices. Our AI models are able to run on-device, without internet connectivity, and provide feedback scores to assist in upleveling the capabilities of lightly trained ultrasound operators in low resource settings.

6.
Sci Rep ; 11(1): 15523, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471144

RESUMEN

Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligence (AI) systems. However, the wide range of possible CXR abnormalities makes it impractical to detect every possible condition by building multiple separate systems, each of which detects one or more pre-specified conditions. In this work, we developed and evaluated an AI system to classify CXRs as normal or abnormal. For training and tuning the system, we used a de-identified dataset of 248,445 patients from a multi-city hospital network in India. To assess generalizability, we evaluated our system using 6 international datasets from India, China, and the United States. Of these datasets, 4 focused on diseases that the AI was not trained to detect: 2 datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our results suggest that the AI system trained using a large dataset containing a diverse array of CXR abnormalities generalizes to new patient populations and unseen diseases. In a simulated workflow where the AI system prioritized abnormal cases, the turnaround time for abnormal cases reduced by 7-28%. These results represent an important step towards evaluating whether AI can be safely used to flag cases in a general setting where previously unseen abnormalities exist. Lastly, to facilitate the continued development of AI models for CXR, we release our collected labels for the publicly available dataset.


Asunto(s)
COVID-19/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tuberculosis/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Estudios de Casos y Controles , China , Aprendizaje Profundo , Femenino , Humanos , India , Masculino , Persona de Mediana Edad , Radiografía Torácica , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...