Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Prog ; 40(1): e3393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37792408

RESUMEN

Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.


Asunto(s)
Candida , Coffea , Aguas Residuales , Café , Saccharomyces cerevisiae
2.
Plant Sci ; 339: 111951, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072331

RESUMEN

Sudden Death Syndrome (SDS) caused by Fusarium tucumaniae is a significant threat to soybean production in Argentina. This study assessed the susceptibility of SY 3 × 7 and SPS 4 × 4 soybeans cultivars to F. tucumaniae and studied changes in root isoflavone levels after infection. Additionally, the biocontrol potential of plant-growth promoting rhizobacteria (PGPR) against SDS was also examined. Our results demonstrated that the SY 3 × 7 cultivar exhibited higher disease severity and total fresh weight loss than SPS 4 × 4. Both cultivars showed induction of daidzein, glycitein, and genistein in response to infection, with the partially resistant cultivar displaying significantly higher daidzein levels than the susceptible cultivar at 14 days post infection (dpi) (2.74 vs 2.17-fold), declining to a lesser extent at 23 dpi (0.94 vs 0.35-fold, respectively). However, daidzein was not able to inhibit F. tucumaniae growth in in vitro assays probably due to its conversion to an isoflavonoid phytoalexin which would ultimately be an effective fungal inhibitor. Furthermore, the PGPR bacterium Bacillus amyloliquefaciens BNM340 displayed antagonistic activity against F. tucumaniae and reduced SDS symptoms in infected plants. This study sheds light on the varying susceptibility of soybean cultivars to SDS, offers insights into isoflavone responses during infection, and demonstrates the potential of PGPR as a biocontrol strategy for SDS management, providing ways for disease control in soybean production.


Asunto(s)
Fusarium , Isoflavonas , Glycine max , Fusarium/fisiología , Muerte Súbita , Argentina , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
3.
Biotechnol Rep (Amst) ; 28: e00546, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33204658

RESUMEN

Enzymes from cold-adapted microorganisms are of high interest to industries due to their high activity at low and mild temperatures, which makes them suitable for their use in several processes that either require a supply of exogenous energy or involve the use of heat labile products. In this work, the protease production by the strain Rhodotorula mucilaginosa CBMAI 1528, previously isolated from the Antarctic continent, was optimized, and the purified enzyme analyzed. It was found that protease production was dependent on culture medium composition and growth temperature, being 20 °C and a culture medium containing both glucose and casein peptone (20 and 10 g/L, respectively) the optimal growing conditions in batch as well as in bioreactor. Moreover, mass spectrometry analysis revealed that the enzyme under study has a 100 % sequence identity with the deduced amino acid sequence of a putative aspartic protease from Rhodotorula sp. JG-1b (protein ID: KWU42276.1). This result was confirmed by the decrease of 95 % proteolytic activity by pepstatin A, a specific inhibitor of aspartic proteases. We propose that the enzyme reported here could be Rodothorulapepsin, a protein characterized in 1972 that did not have an associated sequence to date and has been classified as an orphan enzyme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA