Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 8(4): 366-372, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35422081

RESUMEN

Cactaceae (cacti), a New World plant family, is one of the most endangered groups of organisms on the planet. Conservation planning is uncertain as it is unclear whether climate and land-use change will positively or negatively impact global cactus diversity. On the one hand, a common perception is that future climates will be favourable to cacti as they have multiple adaptations and specialized physiologies and morphologies for increased heat and drought. On the other hand, the wide diversity of the more than 1,500 cactus species, many of which occur in more mesic and cooler ecosystems, questions the view that most cacti can tolerate warmer and drought conditions. Here we assess the hypothesis that cacti will benefit and expand in potential distribution in a warmer and more drought-prone world. We quantified exposure to climate change through range forecasts and associated diversity maps for 408 cactus species under three Representative Concentration Pathways (2.6, 4.5 and 8.5) for 2050 and 2070. Our analyses show that 60% of species will experience a reduction in favourable climate, with about a quarter of species exposed to environmental conditions outside of the current realized niche in over 25% of their current distribution. These results show low sensitivity to many uncertainties in forecasting, mostly deriving from dispersal ability and model complexity rather than climate scenarios. While current range size and the International Union for Conservation of Nature's Red List category were not statistically significant predictors of predicted future changes in suitable climate area, epiphytes had the greatest exposure to novel climates. Overall, the number of cactus species at risk is projected to increase sharply in the future, especially in current richness hotspots. Land-use change has previously been identified as the second-most-common driver of threat among cacti, affecting many of the ~31% of cacti that are currently threatened. Our results suggest that climate change will become a primary driver of cactus extinction risk with 60-90% of species assessed negatively impacted by climate change and/or other anthropogenic processes, depending on how these threat processes are distributed across cactus species.


Asunto(s)
Cactaceae , Cambio Climático , Cactaceae/fisiología , Conservación de los Recursos Naturales , Sequías , Ecosistema
2.
Ecol Lett ; 25(1): 38-51, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34708503

RESUMEN

Estimates of the percentage of species "committed to extinction" by climate change range from 15% to 37%. The question is whether factors other than climate need to be included in models predicting species' range change. We created demographic range models that include climate vs. climate-plus-competition, evaluating their influence on the geographic distribution of Pinus edulis, a pine endemic to the semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inventory plots support the inclusion of competition in range models. However, climate and competition together only partially explain this species' distribution. Instead, the evidence suggests that climate affects other range-limiting processes, including landscape-scale, spatial processes such as disturbances and antagonistic biotic interactions. Complex effects of climate on species distributions-through indirect effects, interactions, and feedbacks-are likely to cause sudden changes in abundance and distribution that are not predictable from a climate-only perspective.


Asunto(s)
Ecosistema , Pinus , Cambio Climático , Bosques , Árboles
3.
Sci Adv ; 5(11): eaaz0414, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31807712

RESUMEN

A key feature of life's diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth's plant biodiversity that are rare. A large fraction, ~36.5% of Earth's ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth's plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.


Asunto(s)
Biodiversidad , Cambio Climático , Embryophyta , Especies en Peligro de Extinción , Extinción Biológica , Embryophyta/clasificación , Embryophyta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...