Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 10(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945351

RESUMEN

Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathologic pain states, but whether changes in serotonergic mechanisms are pro- or antinociceptive is debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naive mice produces mechanical hypersensitivity and conditioned place aversion (CPA). Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin (5HT) concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase in sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.


Asunto(s)
Neuralgia , Serotonina , Ratones , Animales , Serotonina/metabolismo , Hiperalgesia/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Asta Dorsal de la Médula Espinal , Médula Espinal/metabolismo , Neuralgia/metabolismo
2.
Clin Transl Sci ; 14(6): 2208-2219, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34080766

RESUMEN

Following a decision to require label warnings for concurrent use of opioids and benzodiazepines and increased risk of respiratory depression and death, the US Food and Drug Administratioin (FDA) recognized that other sedative psychotropic drugs may be substituted for benzodiazepines and be used concurrently with opioids. In some cases, data on the ability of these alternatives to depress respiration alone or in conjunction with an opioid are lacking. A nonclinical in vivo model was developed that could detect worsening respiratory depression when a benzodiazepine (diazepam) was used in combination with an opioid (oxycodone) compared to the opioid alone based on an increased arterial partial pressure of carbon dioxide (pCO2 ). The current study used that model to assess the impact on respiration of non-benzodiazepine sedative psychotropic drugs representative of different drug classes (clozapine, quetiapine, risperidone, zolpidem, trazodone, carisoprodol, cyclobenzaprine, mirtazapine, topiramate, paroxetine, duloxetine, ramelteon, and suvorexant) administered alone and with oxycodone. At clinically relevant exposures, paroxetine, trazodone, and quetiapine given with oxycodone significantly increased pCO2 above the oxycodone effect. Analyses indicated that most pCO2 interaction effects were due to pharmacokinetic interactions resulting in increased oxycodone exposure. Increased pCO2 recorded with oxycodone-paroxetine co-administration exceeded expected effects from only drug exposure suggesting another mechanism for the increased pharmacodynamic response. This study identified drug-drug interaction effects depressing respiration in an animal model when quetiapine or paroxetine were co-administered with oxycodone. Clinical pharmacodynamic drug interaction studies are being conducted with these drugs to assess translatability of these findings.


Asunto(s)
Quimioterapia Combinada/efectos adversos , Hipnóticos y Sedantes/efectos adversos , Oxicodona/efectos adversos , Psicotrópicos/efectos adversos , Insuficiencia Respiratoria/inducido químicamente , Animales , Oxicodona/administración & dosificación , Psicotrópicos/administración & dosificación , Ratas , Ratas Sprague-Dawley
3.
Artículo en Inglés | MEDLINE | ID: mdl-33706185

RESUMEN

Application of sunscreen is one of many ways to protect skin from the harmful effects of UV radiation. Sunscreen products are widely used and regulated as over-the-counter drug products in the United States. The U.S. Food and Drug Administration recommends an assessment of human systemic absorption of sunscreen active ingredients with a Maximal Usage Trial. The FDA conducted a clinical study to determine the systemic exposure of sunscreen active ingredients present in 4 commercially available sunscreen products of different formulation types under maximal usage conditions. To support this clinical study, a sensitive and specific LC-MS/MS method for the simultaneous determination of the two sunscreens avobenzone and oxybenzone in human plasma was developed. Phospholipid removal 96-well protein precipitation plates were used for sample clean-up and the extracted samples were chromatographed on an Ethylene-Bridged Hybrid (BEH) C18 column in isocratic flow using 10 mM ammonium formate in 0.1% formic acid and methanol (24:76, v/v) as a mobile phase. A triple quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode was used to acquire data. The method was validated as per current FDA bioanalytical method validation guidance, in the ranges 0.20-12.00 ng/mL for avobenzone and 0.40-300.00 ng/mL for oxybenzone. The validated method was used toanalyzethese active ingredients in human clinical study samples.


Asunto(s)
Benzofenonas/sangre , Cromatografía Líquida de Alta Presión/métodos , Propiofenonas/sangre , Protectores Solares/administración & dosificación , Espectrometría de Masas en Tándem/métodos , Administración Cutánea , Benzofenonas/farmacocinética , Femenino , Humanos , Modelos Lineales , Masculino , Propiofenonas/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Protectores Solares/farmacocinética
4.
Toxicol Rep ; 7: 188-197, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021808

RESUMEN

Opioids and benzodiazepines were frequently co-prescribed to patients with pain and psychiatric or neurological disorders; however, co-prescription of these drugs increased the risk for severe respiratory depression and death. Consequently, the U.S. Food and Drug Administration added boxed label warnings describing this risk for all opioids and benzodiazepines. Sedating psychotropic drugs with differing mechanisms of action (e.g., antipsychotics, antidepressants, non-benzodiazepine sedative-hypnotics, etc.) may be increasingly prescribed in place of benzodiazepines. Despite being marketed for years, many sedating psychotropic drugs have neither human nor animal data that quantify or qualify the potential for causing respiratory depression, either alone or in combination with an opioid. In this study, diazepam was selected as the benzodiazepine to detect any additive or synergistic effects on respiratory depression caused by the opioid, oxycodone. Pharmacokinetic studies were conducted at three doses with oxycodone (6.75, 60, 150 mg/kg) and with diazepam (2, 20, 200 mg/kg). Dose dependent decrease in arterial partial pressure of oxygen and increase in arterial partial pressure of carbon dioxide were observed with oxycodone. Diazepam caused similar partial pressure changes only at the highest dose. Further decreases in arterial partial pressure of oxygen and increases in arterial partial pressure of carbon dioxide consistent with exacerbated respiratory depression were observed in rats co-administered oxycodone 150 mg/kg and diazepam 20 mg/kg. These findings confirm previous literature reports of exacerbated opioid-induced respiratory depression with benzodiazepine and opioid co-administration and support the utility of this animal model for assessing opioid-induced respiratory depression and its potential exacerbation by co-administered drugs.

5.
JAMA ; 323(3): 256-267, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31961417

RESUMEN

Importance: A prior pilot study demonstrated the systemic absorption of 4 sunscreen active ingredients; additional studies are needed to determine the systemic absorption of additional active ingredients and how quickly systemic exposure exceeds 0.5 ng/mL as recommended by the US Food and Drug Administration (FDA). Objective: To assess the systemic absorption and pharmacokinetics of the 6 active ingredients (avobenzone, oxybenzone, octocrylene, homosalate, octisalate, and octinoxate) in 4 sunscreen products under single- and maximal-use conditions. Design, Setting, and Participants: Randomized clinical trial at a clinical pharmacology unit (West Bend, Wisconsin) was conducted in 48 healthy participants. The study was conducted between January and February 2019. Interventions: Participants were randomized to 1 of 4 sunscreen products, formulated as lotion (n = 12), aerosol spray (n = 12), nonaerosol spray (n = 12), and pump spray (n = 12). Sunscreen product was applied at 2 mg/cm2 to 75% of body surface area at 0 hours on day 1 and 4 times on day 2 through day 4 at 2-hour intervals, and 34 blood samples were collected over 21 days from each participant. Main Outcomes and Measures: The primary outcome was the maximum plasma concentration of avobenzone over days 1 through 21. Secondary outcomes were the maximum plasma concentrations of oxybenzone, octocrylene, homosalate, octisalate, and octinoxate over days 1 through 21. Results: Among 48 randomized participants (mean [SD] age, 38.7 [13.2] years; 24 women [50%]; 23 white [48%], 23 African American [48%], 1 Asian [2%], and 1 of unknown race/ethnicity [2%]), 44 (92%) completed the trial. Geometric mean maximum plasma concentrations of all 6 active ingredients were greater than 0.5 ng/mL, and this threshold was surpassed on day 1 after a single application for all active ingredients. For avobenzone, the overall maximum plasma concentrations were 7.1 ng/mL (coefficient of variation [CV], 73.9%) for lotion, 3.5 ng/mL (CV, 70.9%) for aerosol spray, 3.5 ng/mL (CV, 73.0%) for nonaerosol spray, and 3.3 ng/mL (CV, 47.8%) for pump spray. For oxybenzone, the concentrations were 258.1 ng/mL (CV, 53.0%) for lotion and 180.1 ng/mL (CV, 57.3%) for aerosol spray. For octocrylene, the concentrations were 7.8 ng/mL (CV, 87.1%) for lotion, 6.6 ng/mL (CV, 78.1%) for aerosol spray, and 6.6 ng/mL (CV, 103.9%) for nonaerosol spray. For homosalate, concentrations were 23.1 ng/mL (CV, 68.0%) for aerosol spray, 17.9 ng/mL (CV, 61.7%) for nonaerosol spray, and 13.9 ng/mL (CV, 70.2%) for pump spray. For octisalate, concentrations were 5.1 ng/mL (CV, 81.6%) for aerosol spray, 5.8 ng/mL (CV, 77.4%) for nonaerosol spray, and 4.6 ng/mL (CV, 97.6%) for pump spray. For octinoxate, concentrations were 7.9 ng/mL (CV, 86.5%) for nonaerosol spray and 5.2 ng/mL (CV, 68.2%) for pump spray. The most common adverse event was rash, which developed in 14 participants. Conclusions and Relevance: In this study conducted in a clinical pharmacology unit and examining sunscreen application among healthy participants, all 6 of the tested active ingredients administered in 4 different sunscreen formulations were systemically absorbed and had plasma concentrations that surpassed the FDA threshold for potentially waiving some of the additional safety studies for sunscreens. These findings do not indicate that individuals should refrain from the use of sunscreen. Trial Registration: ClinicalTrials.gov Identifier: NCT03582215.


Asunto(s)
Propiofenonas/sangre , Absorción Cutánea , Protectores Solares/farmacocinética , Acrilatos/sangre , Acrilatos/farmacocinética , Adulto , Benzofenonas/sangre , Benzofenonas/farmacocinética , Cinamatos/sangre , Cinamatos/farmacocinética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Propiofenonas/farmacocinética , Salicilatos/sangre , Salicilatos/farmacocinética , Protectores Solares/efectos adversos
6.
RSC Adv ; 10(2): 886-896, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35494453

RESUMEN

Benzodiazepines potentiate respiratory depression when combined with an opioid leading the U.S Food and Drug Administration (FDA) to recommend updating the labels of these products with a boxed warning for respiratory depression with co-use. Potential respiratory depression upon co-administration of opioids with some psychotropic drugs is not well understood. The FDA is currently investigating various psychotropic drug interactions with the commonly used opioid, oxycodone, in a rat model assessing respiratory depression. Pharmacokinetic and/or pharmacodynamic (PK/PD) interaction between oxycodone and diazepam was evaluated in a positive control arm of these experiments. Understanding the systemic exposure of these drugs alone and in combination exposures was used to identify PK/PD interactions. The authors developed a simple, high throughput liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for the simultaneous determination of oxycodone and diazepam in rat plasma. Sample preparation was performed in 96-well protein precipitation plates using acetonitrile. Processed samples were analyzed using a C18 column with a gradient mobile phase composed of 2 mM aqueous ammonium formate with 0.1% formic acid and acetonitrile. A Thermo TSQ Quantum Ultra AM triple quadrupole mass spectrometer with multiple reaction monitoring (MRM) mode was used to acquire data. The method was validated for selectivity, specificity, linearity, precision and accuracy, dilution integrity and stability. The validated LC-MS/MS assay was utilized for quantifying oxycodone and diazepam in concomitantly treated Sprague Dawley (SD) rats.

7.
JAMA ; 321(21): 2082-2091, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31058986

RESUMEN

Importance: The US Food and Drug Administration (FDA) has provided guidance that sunscreen active ingredients with systemic absorption greater than 0.5 ng/mL or with safety concerns should undergo nonclinical toxicology assessment including systemic carcinogenicity and additional developmental and reproductive studies. Objective: To determine whether the active ingredients (avobenzone, oxybenzone, octocrylene, and ecamsule) of 4 commercially available sunscreens are absorbed into systemic circulation. Design, Setting, and Participants: Randomized clinical trial conducted at a phase 1 clinical pharmacology unit in the United States and enrolling 24 healthy volunteers. Enrollment started in July 2018 and ended in August 2018. Interventions: Participants were randomized to 1 of 4 sunscreens: spray 1 (n = 6 participants), spray 2 (n = 6), a lotion (n = 6), and a cream (n = 6). Two milligrams of sunscreen per 1 cm2 was applied to 75% of body surface area 4 times per day for 4 days, and 30 blood samples were collected over 7 days from each participant. Main Outcomes and Measures: The primary outcome was the maximum plasma concentration of avobenzone. Secondary outcomes were the maximum plasma concentrations of oxybenzone, octocrylene, and ecamsule. Results: Among 24 participants randomized (mean age, 35.5 [SD, 1.5] years; 12 (50%] women; 14 [58%] black or African American; 14 [58%]), 23 (96%) completed the trial. For avobenzone, geometric mean maximum plasma concentrations were 4.0 ng/mL (coefficient of variation, 6.9%) for spray 1; 3.4 ng/mL (coefficient of variation, 77.3%) for spray 2; 4.3 ng/mL (coefficient of variation, 46.1%) for lotion; and 1.8 ng/mL (coefficient of variation, 32.1%). For oxybenzone, the corresponding values were 209.6 ng/mL (66.8%) for spray 1, 194.9 ng/mL (52.4%) for spray 2, and 169.3 ng/mL (44.5%) for lotion; for octocrylene, 2.9 ng/mL (102%) for spray 1, 7.8 ng/mL (113.3%) for spray 2, 5.7 ng/mL (66.3%) for lotion, and 5.7 ng/mL (47.1%) for cream; and for ecamsule, 1.5 ng/mL (166.1%) for cream. Systemic concentrations greater than 0.5 ng/mL were reached for all 4 products after 4 applications on day 1. The most common adverse event was rash, which developed in 1 participant with each sunscreen. Conclusions and Relevance: In this preliminary study involving healthy volunteers, application of 4 commercially available sunscreens under maximal use conditions resulted in plasma concentrations that exceeded the threshold established by the FDA for potentially waiving some nonclinical toxicology studies for sunscreens. The systemic absorption of sunscreen ingredients supports the need for further studies to determine the clinical significance of these findings. These results do not indicate that individuals should refrain from the use of sunscreen. Trial Registration: ClinicalTrials.gov Identifier: NCT03582215.


Asunto(s)
Absorción Cutánea , Protectores Solares/farmacocinética , Acrilatos/sangre , Acrilatos/farmacocinética , Adulto , Benzofenonas/sangre , Benzofenonas/farmacocinética , Canfanos/sangre , Canfanos/farmacocinética , Femenino , Voluntarios Sanos , Humanos , Masculino , Concentración Máxima Admisible , Proyectos Piloto , Propiofenonas/sangre , Propiofenonas/farmacocinética , Crema para la Piel , Ácidos Sulfónicos/sangre , Ácidos Sulfónicos/farmacocinética , Protectores Solares/administración & dosificación , Protectores Solares/análisis
8.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1118-1119: 93-100, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31030106

RESUMEN

In mass spectrometry, compounds that have different ionization properties experience challenges in simultaneous analysis. In the present paper, the authors proposed a polarity switching (+ve and -ve) LC-MS/MS method to analyze oxycodone and topiramate in a single run. The developed method was validated in the range of 5-1000 ng/mL for oxycodone and 20-5000 ng/mL for topiramate as per the US FDA guidelines. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode to analyze oxycodone and topiramate simultaneously using oxycodone-d6 and topiramate-d12 as internal standards, respectively. Sample preparation was performed in 96-well protein precipitation plates using acetonitrile. Processed samples were analyzed using a C18 column with a gradient mobile phase composed of 10 mm ammonium formate with 0.1% formic acid and acetonitrile. The method was validated for selectivity, specificity, linearity, precision and accuracy, dilution integrity and stability. After validation, this method was successfully applied to quantify oxycodone and topiramate in plasma of concomitantly treated Sprague Dawley (SD) rats.


Asunto(s)
Cromatografía Liquida/métodos , Oxicodona/sangre , Espectrometría de Masas en Tándem/métodos , Topiramato/sangre , Animales , Modelos Lineales , Masculino , Oxicodona/administración & dosificación , Oxicodona/química , Oxicodona/farmacocinética , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Topiramato/administración & dosificación , Topiramato/química , Topiramato/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...