Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467704

RESUMEN

BACKGROUND: Despite advancements in neonatal care, germinal matrix-intraventricular hemorrhage impacts 20% of very preterm infants, exacerbating their neurological prognosis. Understanding its complex, multifactorial pathophysiology and rapid onset remains challenging. This study aims to link specific cord blood biomolecules at birth with post-natal germinal matrix-intraventricular hemorrhage onset. METHODS: A monocentric, prospective case-control study was conducted at Rouen University Hospital from 2015 to 2020. Premature newborns ( < 30 gestational age) were included and cord blood was sampled in the delivery room. A retrospective matching procedure was held in 2021 to select samples for proteomic and metabolomic analysis of 370 biomolecules. RESULTS: 26 patients with germinal matrix-intraventricular hemorrhage cases and 60 controls were included. Clinical differences were minimal, except for higher invasive ventilation rates in the germinal matrix-intraventricular hemorrhage group. Germinal matrix-intraventricular hemorrhage newborns exhibited lower phosphatidylcholine levels and elevated levels of four proteins: BOC cell adhesion-associated protein, placental growth factor, Leukocyte-associated immunoglobulin-like receptor 2, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2. CONCLUSION: This study identifies biomolecules that may be linked to subsequent germinal matrix-intraventricular hemorrhage, suggesting heightened vascular disruption risk as an independent factor. These results need further validation but could serve as early germinal matrix-intraventricular hemorrhage risk biomarkers for future evaluations. IMPACT: Decrease in certain phosphatidylcholines and increase in four proteins in cord blood at birth may be linked to subsequent germinal matrix-intraventricular hemorrhage in premature newborns. The four proteins are BOC cell adhesion-associated protein, placental growth factor, leukocyte-associated immunoglobulin-like receptor 2, and TNF-related apoptosis-inducing ligand receptor 2. This biological imprint could point toward higher vascular disruption risk as an independent risk factor for this complication and with further validations, could be used for better stratification of premature newborns at birth.

2.
Clin Chim Acta ; 542: 117278, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871662

RESUMEN

BACKGROUND: Dried blood spots (DBS) are widely used as a non-invasive sampling method, especially in newborn screening (NBS). Despite its numerous advantages, conventional DBS might be limited by the hematocrit effect when analyzing a punch, depending on its position in the blood spot. This effect could be avoided using hematocrit-independent sampling devices such as the hemaPEN®. This device collects blood through integrated microcapillaries, and a fixed blood volume is deposited on a pre-punched paper disc. NBS programs are increasingly poised to include lysosomal disorders, given the availability of treatments that improve clinical outcomes if detected early. In this study, the effect of hematocrit and punch position in the DBS on the assay of 6 lysosomal enzymes was evaluated on 3 mm discs pre-punched in hemaPEN® devices compared to 3 mm punches from the PerkinElmer 226 DBS. METHODS: The enzyme activities were measured by multiplexed tandem mass spectrometry coupled to ultra-high performance liquid chromatography. Three hematocrit levels (23%, 35%, and 50%) and punching positions (center, intermediary, and border) were tested. Three replicates have been performed for each condition. A multivariate approach has been used along with a univariate method to assess the effect of the experimental design on each enzyme activity. RESULTS: Hematocrit, punch position, and whole blood sampling method do not affect the assessment of enzyme activity using the NeoLSD® assay. CONCLUSION: The results obtained from conventional DBS and the volumetric device HemaPEN® are comparable. These results underline the reliability of DBS for this test.


Asunto(s)
Pruebas con Sangre Seca , Espectrometría de Masas en Tándem , Recién Nacido , Humanos , Espectrometría de Masas en Tándem/métodos , Hematócrito , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión , Pruebas con Sangre Seca/métodos
3.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680306

RESUMEN

(1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracranial hypertension. The mean survival is between 15 to 17 months. Given this aggressive prognosis, there is an urgent need for a better understanding of the underlying mechanisms of glioblastoma to unveil new diagnostic strategies and therapeutic targets through a deeper understanding of its biology. (2) Methods: To systematically address this issue, we performed targeted and untargeted metabolomics-based investigations on both tissue and plasma samples from patients with glioblastoma. (3) Results: This study revealed 176 differentially expressed lipids and metabolites, 148 in plasma and 28 in tissue samples. Main biochemical classes include phospholipids, acylcarnitines, sphingomyelins, and triacylglycerols. Functional analyses revealed deep metabolic remodeling in glioblastoma lipids and energy substrates, which unveils the major role of lipids in tumor progression by modulating its own environment. (4) Conclusions: Overall, our study demonstrates in situ and systemic metabolic rewiring in glioblastoma that could shed light on its underlying biological plasticity and progression to inform diagnosis and/or therapeutic strategies.

4.
J Pers Med ; 11(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575675

RESUMEN

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal disease due to a deficiency in the activity of the lysosomal α-galactosidase A (GalA), a key enzyme in the glycosphingolipid degradation pathway. FD is a complex disease with a poor genotype-phenotype correlation. FD could involve kidney, heart or central nervous system impairment that significantly decreases life expectancy. The advent of omics technologies offers the possibility of a global, integrated and systemic approach well-suited for the exploration of this complex disease. MATERIALS AND METHODS: Sixty-six plasmas of FD patients from the French Fabry cohort (FFABRY) and 60 control plasmas were analyzed using liquid chromatography and mass spectrometry-based targeted metabolomics (188 metabolites) along with the determination of LysoGb3 concentration and GalA enzymatic activity. Conventional univariate analyses as well as systems biology and machine learning methods were used. RESULTS: The analysis allowed for the identification of discriminating metabolic profiles that unambiguously separate FD patients from control subjects. The analysis identified 86 metabolites that are differentially expressed, including 62 Glycerophospholipids, 8 Acylcarnitines, 6 Sphingomyelins, 5 Aminoacids and 5 Biogenic Amines. Thirteen consensus metabolites were identified through network-based analysis, including 1 biogenic amine, 2 lysophosphatidylcholines and 10 glycerophospholipids. A predictive model using these metabolites showed an AUC-ROC of 0.992 (CI: 0.965-1.000). CONCLUSION: These results highlight deep metabolic remodeling in FD and confirm the potential of omics-based approaches in lysosomal diseases to reveal clinical and biological associations to generate pathophysiological hypotheses.

5.
Clin Chim Acta ; 519: 64-69, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33857477

RESUMEN

BACKGROUND: Lysosomal acid lipase deficiency (LALD, OMIM#278000) is a rare lysosomal disorder with an autosomal recessive inheritance. The main clinical manifestations are related to a progressive accumulation of cholesteryl esters, triglycerides or both within the lysosome in different organs such as the liver, spleen, and cardiovascular system. A wide range of clinical severity is associated with LALD including a severe very rare antenatal/neonatal/infantile phenotype named Wolman disease and a late-onset form named cholesteryl ester storage disease (CESD). METHODS: This study aimed to investigate a cohort of at-risk patients (4174) presenting with clinical or biological signs consistent with LALD using the assessment of LAL activity on dried blood spots. RESULTS: LAL activity was lower than 0.05 nmol/punch/L (cut-off: 0.12) in 19 patients including 13 CESD and 6 Wolman. Molecular study has been conducted in 17 patients and succeeded in identifying 34 mutated alleles. Fourteen unique variants have been characterized, 7 of which are novel. CONCLUSION: This study allowed to identify a series of patients and expanded the molecular spectrum knowledge of LALD. Besides, a new screening criteria grid based on the clinical/biological data from our study and the literature has been proposed in order to enhance the diagnosis rate in at risk populations.


Asunto(s)
Enfermedad de Acumulación de Colesterol Éster , Enfermedad de Wolman , Enfermedad de Acumulación de Colesterol Éster/diagnóstico , Enfermedad de Acumulación de Colesterol Éster/genética , Ésteres del Colesterol , Femenino , Humanos , Recién Nacido , Lipasa , Embarazo , Esterol Esterasa/genética , Enfermedad de Wolman/diagnóstico , Enfermedad de Wolman/genética
6.
Int J Mol Sci ; 20(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669586

RESUMEN

Metabolic phenotyping is poised as a powerful and promising tool for biomarker discovery in inherited metabolic diseases. However, few studies applied this approach to mcopolysaccharidoses (MPS). Thus, this innovative functional approach may unveil comprehensive impairments in MPS biology. This study explores mcopolysaccharidosis VI (MPS VI) or Maroteaux⁻Lamy syndrome (OMIM #253200) which is an autosomal recessive lysosomal storage disease caused by the deficiency of arylsulfatase B enzyme. Urine samples were collected from 16 MPS VI patients and 66 healthy control individuals. Untargeted metabolomics analysis was applied using ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry. Furthermore, dermatan sulfate, amino acids, carnitine, and acylcarnitine profiles were quantified using liquid chromatography coupled to tandem mass spectrometry. Univariate analysis and multivariate data modeling were used for integrative analysis and discriminant metabolites selection. Pathway analysis was done to unveil impaired metabolism. The study revealed significant differential biochemical patterns using multivariate data modeling. Pathway analysis revealed that several major amino acid pathways were dysregulated in MPS VI. Integrative analysis of targeted and untargeted metabolomics data with in silico results yielded arginine-proline, histidine, and glutathione metabolism being the most affected. This study is one of the first metabolic phenotyping studies of MPS VI. The findings might shed light on molecular understanding of MPS pathophysiology to develop further MPS studies to enhance diagnosis and treatments of this rare condition.


Asunto(s)
Metaboloma , Metabolómica , Mucopolisacaridosis VI/metabolismo , Adolescente , Adulto , Anciano , Niño , Preescolar , Biología Computacional/métodos , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Metabolómica/métodos , Persona de Mediana Edad , Anotación de Secuencia Molecular , Mucopolisacaridosis VI/genética , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...