Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651987

RESUMEN

MAJIS, Moons and Jupiter Imaging Spectrometer, is one of the scientific payloads aboard European Space Agency's Jupiter Icy Moons Explorer mission. This instrument underwent a comprehensive characterization and calibration campaign before integration on the spacecraft. In this work, we report on the measurements of the instrumental spatial responses, including the slit and pixel functions, the knife edge function, the ensquared energy, and the keystone aberration. The measurements were repeated in several positions of the field of view and within the range of MAJIS temperatures during science observations. The goal was to characterize the instrument's response under a wide set of conditions and at different visible-infrared wavelengths. The experimental setups employed to perform calibrations are described in detail, and the methodology applied to derive the instrumental spatial responses is discussed. After launch, minor changes in the instrument response and the coalignment between the two spectral channels were identified by comparing on-ground data with the first in-flight data returned by MAJIS.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451143

RESUMEN

The Moons And Jupiter Imaging Spectrometer (MAJIS) is the visible and near-infrared imaging spectrometer onboard the European Space Agency (ESA)'s Jupiter Icy Moons Explorer mission. Before its integration into the spacecraft, the instrument undergoes an extensive ground calibration to establish its baseline performances. This process prepares the imaging spectrometer for flight operations by characterizing the behavior of the instrument under various operative conditions and uncovering instrumental distortions that may depend on instrumental commands. Two steps of the on-ground calibration campaigns were held at the instrument level to produce the data. Additional in-flight measurements have recently been obtained after launch during the Near-Earth Commissioning Phase. In this article, we present the analyses of these datasets, focusing on the characterization of the spectral performances. First, we describe and analyze the spectral calibration datasets obtained using both monochromatic sources and polychromatic sources coupled with solid and gas samples. Then, we derive the spectral sampling and the spectral response function over the entire field of view. These spectral characteristics are quantified for various operational parameters of MAJIS, such as temperature and spectral binning. The derived on-ground performances are then compared with in-flight measurements obtained after launch and presented in the framework of the MAJIS performance requirements.

3.
Rev Sci Instrum ; 93(5): 054503, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649797

RESUMEN

MicrOmega, a miniaturized near-infrared hyperspectral microscope, has been selected to characterize in the laboratory the samples returned from Ryugu by the Hayabusa2 mission. MicrOmega has been delivered to the Extraterrestrial Samples Curation Center of the Japanese Aerospace eXploration Agency at the Institute of Space and Astronautical Science in July 2020 and then mounted and calibrated to be ready for the analyses of the samples returned to Earth on December 6, 2020. MicrOmega was designed to analyze the returned samples within a field of view of 5 × 5 mm2 and a spatial sampling of 22.5 µm. It acquires 3D near-infrared hyperspectral image-cubes by imaging the sample with monochromatic images sequentially covering the 0.99-3.65 µm spectral range, with a typical spectral sampling of 20 cm-1. This paper reports the calibration processes performed to extract scientific data from these MicrOmega image-cubes. The determination of the instrumental response and the spectral calibration is detailed. We meet or exceed the goals of achieving an accuracy of ∼20% for the absolute reflectance level, 1% for the relative wavelength-to-wavelength reflectance, and <5 nm for the peak position of the detected absorption features. For the nominal measurements of Ryugu samples with MicrOmega/Curation, the instrument performance also reaches a signal-to-noise ratio of >100 over the entire spectral range. By characterizing the entire collection of the returned samples at the microscopic scale, MicrOmega/Curation offers the potential to provide unprecedented insights into the composition and history of their asteroid parent body.


Asunto(s)
Microscopía , Calibración , Microscopía/métodos
4.
Astrobiology ; 22(3): 263-292, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35263189

RESUMEN

The Planetary Terrestrial Analogues Library (PTAL) project aims at building and exploiting a database involving several analytical techniques, to help characterize the mineralogical evolution of terrestrial bodies, starting with Mars. Around 100 natural Earth rock samples have been collected from selected locations to gather a variety of analogs for martian geology, from volcanic to sedimentary origin with different levels of alteration. All samples are to be characterized within the PTAL project with different mineralogical and elemental analysis techniques, including techniques brought on actual and future instruments at the surface of Mars (near infrared [NIR] spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy). This article presents the NIR measurements and interpretations acquired with the ExoMars MicrOmega spare instrument. MicrOmega is an NIR hyperspectral microscope, mounted in the analytical laboratory of the ExoMars rover Rosalind Franklin. All PTAL samples have been observed at least once with MicrOmega using a dedicated setup. For all PTAL samples, data description and interpretation are presented. For some chosen examples, color composite images and spectra are presented as well. A comparison with characterizations by NIR and Raman spectrometry is discussed for some of the samples. In particular, the spectral imaging capacity of MicrOmega allows detections of mineral components and potential organic molecules that were not possible with other one-spot techniques. In addition, it enables estimation of heterogeneities in the spatial distribution of various mineral species. The MicrOmega/PTAL data shall support the future observations and analyses performed by MicrOmega/Rosalind Franklin instrument.


Asunto(s)
Exobiología , Marte , Planeta Tierra , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Minerales/análisis
5.
Nat Commun ; 12(1): 5837, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611167

RESUMEN

Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body. Hayabusa2 remote-sensing observations find that on the asteroid (162173) Ryugu both north and south pole regions preserve the material least processed by space weathering, which is spectrally blue carbonaceous chondritic material with a 0-3% deep 0.7-µm band absorption, indicative of Fe-bearing phyllosilicates. Here we report that spectrally blue Ryugu's parent body experienced intensive aqueous alteration and subsequent thermal metamorphism at 570-670 K (300-400 °C), suggesting that Ryugu's parent body was heated by radioactive decay of short-lived radionuclides possibly because of its early formation 2-2.5 Ma. The samples being brought to Earth by Hayabusa2 will give us our first insights into this epoch in solar system history.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...