Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell Rep ; 43(5): 114203, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38722744

RESUMEN

Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.

2.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427813

RESUMEN

Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.


Asunto(s)
Aneuploidia , Hongos , Humanos , Teorema de Bayes , Diploidia
3.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497819

RESUMEN

The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.


Asunto(s)
Candidiasis , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Simbiosis , Terapia de Inmunosupresión
4.
PLoS Biol ; 22(3): e3002570, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489394

RESUMEN

Some drugs increase the mutation rate of their target pathogen, a potentially concerning mechanism as the pathogen might evolve faster toward an undesired phenotype. We suggest a four-step assessment of evolutionary safety for the approval of such treatments.


Asunto(s)
Aprobación de Drogas , Mutágenos , Mutágenos/toxicidad , Mutagénesis , Tasa de Mutación , Fenotipo
5.
PLoS Comput Biol ; 19(10): e1011608, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37903105

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1010391.].

6.
Nat Commun ; 14(1): 5384, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666816

RESUMEN

Diabetes and associated comorbidities are a global health threat on the rise. We conducted a six-month dietary intervention in pre-diabetic individuals (NCT03222791), to mitigate the hyperglycemia and enhance metabolic health. The current work explores early diabetes markers in the 200 individuals who completed the trial. We find 166 of 2,803 measured features, including oral and gut microbial species and pathways, serum metabolites and cytokines, show significant change in response to a personalized postprandial glucose-targeting diet or the standard of care Mediterranean diet. These changes include established markers of hyperglycemia as well as novel features that can now be investigated as potential therapeutic targets. Our results indicate the microbiome mediates the effect of diet on glycemic, metabolic and immune measurements, with gut microbiome compositional change explaining 12.25% of serum metabolites variance. Although the gut microbiome displays greater compositional changes compared to the oral microbiome, the oral microbiome demonstrates more changes at the genetic level, with trends dependent on environmental richness and species prevalence in the population. In conclusion, our study shows dietary interventions can affect the microbiome, cardiometabolic profile and immune response of the host, and that these factors are well associated with each other, and can be harnessed for new therapeutic modalities.


Asunto(s)
Microbioma Gastrointestinal , Hiperglucemia , Microbiota , Estado Prediabético , Humanos , Citocinas
7.
PLoS Biol ; 21(8): e3002214, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552682

RESUMEN

Nucleoside analogs are a major class of antiviral drugs. Some act by increasing the viral mutation rate causing lethal mutagenesis of the virus. Their mutagenic capacity, however, may lead to an evolutionary safety concern. We define evolutionary safety as a probabilistic assurance that the treatment will not generate an increased number of mutants. We develop a mathematical framework to estimate the total mutant load produced with and without mutagenic treatment. We predict rates of appearance of such virus mutants as a function of the timing of treatment and the immune competence of patients, employing realistic assumptions about the vulnerability of the viral genome and its potential to generate viable mutants. We focus on the case study of Molnupiravir, which is an FDA-approved treatment against Coronavirus Disease-2019 (COVID-19). We estimate that Molnupiravir is narrowly evolutionarily safe, subject to the current estimate of parameters. Evolutionary safety can be improved by restricting treatment with this drug to individuals with a low immunological clearance rate and, in future, by designing treatments that lead to a greater increase in mutation rate. We report a simple mathematical rule to determine the fold increase in mutation rate required to obtain evolutionary safety that is also applicable to other pathogen-treatment combinations.


Asunto(s)
COVID-19 , Virus , Humanos , Antivirales/efectos adversos , COVID-19/genética , Mutagénesis/genética , Hidroxilaminas , Mutágenos/toxicidad , Virus/genética
8.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37293818

RESUMEN

The mutation rate plays an important role in adaptive evolution. It can be modified by mutator and anti-mutator alleles. Recent empirical evidence hints that the mutation rate may vary among genetically identical individuals: evidence from bacteria suggests that the mutation rate can be affected by expression noise of a DNA repair protein and potentially also by translation errors in various proteins. Importantly, this non-genetic variation may be heritable via a transgenerational epigenetic mode of inheritance, giving rise to a mutator phenotype that is independent from mutator alleles. Here, we investigate mathematically how the rate of adaptive evolution is affected by the rate of mutation rate phenotype switching. We model an asexual population with two mutation rate phenotypes, non-mutator and mutator. An offspring may switch from its parental phenotype to the other phenotype. We find that switching rates that correspond to so-far empirically described non-genetic systems of inheritance of the mutation rate lead to higher rates of adaptation on both artificial and natural fitness landscapes. These switching rates can maintain within the same individuals both a mutator phenotype and intermediary mutations, a combination that facilitates adaptation. Moreover, non-genetic inheritance increases the proportion of mutators in the population, which in turn increases the probability of hitchhiking of the mutator phenotype with adaptive mutations. This in turns facilitates the acquisition of additional adaptive mutations. Our results rationalize recently observed noise in the expression of proteins that affect the mutation rate and suggest that non-genetic inheritance of this phenotype may facilitate evolutionary adaptive processes.


Asunto(s)
Adaptación Fisiológica , Tasa de Mutación , Mutación , Fenotipo , Adaptación Fisiológica/genética , Bacterias/genética
9.
Cell ; 185(20): 3789-3806.e17, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179670

RESUMEN

Cancer-microbe associations have been explored for centuries, but cancer-associated fungi have rarely been examined. Here, we comprehensively characterize the cancer mycobiome within 17,401 patient tissue, blood, and plasma samples across 35 cancer types in four independent cohorts. We report fungal DNA and cells at low abundances across many major human cancers, with differences in community compositions that differ among cancer types, even when accounting for technical background. Fungal histological staining of tissue microarrays supported intratumoral presence and frequent spatial association with cancer cells and macrophages. Comparing intratumoral fungal communities with matched bacteriomes and immunomes revealed co-occurring bi-domain ecologies, often with permissive, rather than competitive, microenvironments and distinct immune responses. Clinically focused assessments suggested prognostic and diagnostic capacities of the tissue and plasma mycobiomes, even in stage I cancers, and synergistic predictive performance with bacteriomes.


Asunto(s)
Micobioma , Neoplasias , ADN de Hongos/análisis , Hongos/genética , Humanos
10.
PLoS Comput Biol ; 18(8): e1010391, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35947602

RESUMEN

The COVID-19 pandemic demonstrated that the process of global vaccination against a novel virus can be a prolonged one. Social distancing measures, that are initially adopted to control the pandemic, are gradually relaxed as vaccination progresses and population immunity increases. The result is a prolonged period of high disease prevalence combined with a fitness advantage for vaccine-resistant variants, which together lead to a considerably increased probability for vaccine escape. A spatial vaccination strategy is proposed that has the potential to dramatically reduce this risk. Rather than dispersing the vaccination effort evenly throughout a country, distinct geographic regions of the country are sequentially vaccinated, quickly bringing each to effective herd immunity. Regions with high vaccination rates will then have low infection rates and vice versa. Since people primarily interact within their own region, spatial vaccination reduces the number of encounters between infected individuals (the source of mutations) and vaccinated individuals (who facilitate the spread of vaccine-resistant strains). Thus, spatial vaccination may help mitigate the global risk of vaccine-resistant variants.


Asunto(s)
COVID-19 , Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Inmunidad Colectiva , Pandemias/prevención & control , Vacunación
11.
Mol Biol Evol ; 39(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976926

RESUMEN

Fitness landscape mapping and the prediction of evolutionary trajectories on these landscapes are major tasks in evolutionary biology research. Evolutionary dynamics is tightly linked to the landscape topography, but this relation is not straightforward. Here, we analyze a fitness landscape of a yeast tRNA gene, previously measured under four different conditions. We find that the wild type allele is sub-optimal, and 8-10% of its variants are fitter. We rule out the possibilities that the wild type is fittest on average on these four conditions or located on a local fitness maximum. Notwithstanding, we cannot exclude the possibility that the wild type might be fittest in some of the many conditions in the complex ecology that yeast lives at. Instead, we find that the wild type is mutationally robust ("flat"), while more fit variants are typically mutationally fragile. Similar observations of mutational robustness or flatness have been so far made in very few cases, predominantly in viral genomes.


Asunto(s)
Aptitud Genética , Saccharomyces cerevisiae , Alelos , Evolución Molecular , Modelos Genéticos , Mutación , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 298(7): 102141, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714765

RESUMEN

Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2'-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ modifications identified here may contribute to modulating the function of noncoding RNAs involved in rRNA processing, rRNA modification, protein synthesis, and protein translocation during cycling of the parasite between its two hosts.


Asunto(s)
Interacciones Huésped-Parásitos , Estadios del Ciclo de Vida , Seudouridina , ARN Pequeño no Traducido , Trypanosoma brucei brucei , Animales , Interacciones Huésped-Parásitos/fisiología , Estadios del Ciclo de Vida/fisiología , Seudouridina/genética , Seudouridina/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
13.
Nat Hum Behav ; 6(2): 193-206, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35210582

RESUMEN

The greatest hope for a return to normalcy following the COVID-19 pandemic is worldwide vaccination. Yet, a relaxation of social distancing that allows increased transmissibility, coupled with selection pressure due to vaccination, will probably lead to the emergence of vaccine resistance. We analyse the evolutionary dynamics of COVID-19 in the presence of dynamic contact reduction and in response to vaccination. We use infection and vaccination data from six different countries. We show that under slow vaccination, resistance is very likely to appear even if social distancing is maintained. Under fast vaccination, the emergence of mutants can be prevented if social distancing is maintained during vaccination. We analyse multiple human factors that affect the evolutionary potential of the virus, including the extent of dynamic social distancing, vaccination campaigns, vaccine design, boosters and vaccine hesitancy. We provide guidelines for policies that aim to minimize the probability of emergence of vaccine-resistant variants.


Asunto(s)
Vacunas contra la COVID-19 , Farmacorresistencia Viral , Inmunogenicidad Vacunal , Vacunación Masiva , Distanciamiento Físico , SARS-CoV-2 , COVID-19 , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Control de Enfermedades Transmisibles/organización & administración , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/inmunología , Modelos Epidemiológicos , Humanos , Vacunación Masiva/métodos , Vacunación Masiva/estadística & datos numéricos , Formulación de Políticas , Probabilidad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Procesos Estocásticos , Vacilación a la Vacunación , Eficacia de las Vacunas
14.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34642250

RESUMEN

The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.


Asunto(s)
Activación de Linfocitos , ARN de Transferencia/metabolismo , Linfocitos T/inmunología , Proliferación Celular/genética , Codón , Mutación del Sistema de Lectura , Humanos , Procesamiento Postranscripcional del ARN , Linfocitos T/citología
15.
PLoS Genet ; 17(9): e1009805, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570750

RESUMEN

RNA splicing is a key process in eukaryotic gene expression, in which an intron is spliced out of a pre-mRNA molecule to eventually produce a mature mRNA. Most intron-containing genes are constitutively spliced, hence efficient splicing of an intron is crucial for efficient regulation of gene expression. Here we use a large synthetic oligo library of ~20,000 variants to explore how different intronic sequence features affect splicing efficiency and mRNA expression levels in S. cerevisiae. Introns are defined by three functional sites, the 5' donor site, the branch site, and the 3' acceptor site. Using a combinatorial design of synthetic introns, we demonstrate how non-consensus splice site sequences in each of these sites affect splicing efficiency. We then show that S. cerevisiae splicing machinery tends to select alternative 3' splice sites downstream of the original site, and we suggest that this tendency created a selective pressure, leading to the avoidance of cryptic splice site motifs near introns' 3' ends. We further use natural intronic sequences from other yeast species, whose splicing machineries have diverged to various extents, to show how intron architectures in the various species have been adapted to the organism's splicing machinery. We suggest that the observed tendency for cryptic splicing is a result of a loss of a specific splicing factor, U2AF1. Lastly, we show that synthetic sequences containing two introns give rise to alternative RNA isoforms in S. cerevisiae, demonstrating that merely a synthetic fusion of two introns might be suffice to facilitate alternative splicing in yeast. Our study reveals novel mechanisms by which introns are shaped in evolution to allow cells to regulate their transcriptome. In addition, it provides a valuable resource to study the regulation of constitutive and alternative splicing in a model organism.


Asunto(s)
Empalme del ARN , Saccharomyces cerevisiae/genética , Biología Computacional/métodos , Evolución Molecular , Genes Fúngicos , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , ARN Mensajero/genética
17.
Nat Cancer ; 2(10): 1055-1070, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-35121883

RESUMEN

Stochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%. Notably, CTP is drug specific. We found that differential serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1) protein determines the CTP of lung and of head and neck cancer cells under epidermal growth factor receptor inhibition, both in vitro and in vivo. Indeed, the first-in-class IRS1 inhibitor NT219 was highly synergistic with anti-epidermal growth factor receptor therapy across multiple in vitro and in vivo models. Elucidation of drug-specific mechanisms that determine the degree and stability of cellular CTP may establish a framework for the elimination of cancer persisters, using new rationally designed drug combinations.


Asunto(s)
Receptores ErbB , Neoplasias , Receptores ErbB/genética , Proteínas Sustrato del Receptor de Insulina/genética , Fosforilación , Probabilidad
18.
Elife ; 92020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33357381

RESUMEN

Different subsets of the tRNA pool in human cells are expressed in different cellular conditions. The 'proliferation-tRNAs' are induced upon normal and cancerous cell division, while the 'differentiation-tRNAs' are active in non-dividing, differentiated cells. Here we examine the essentiality of the various tRNAs upon cellular growth and arrest. We established a CRISPR-based editing procedure with sgRNAs that each target a tRNA family. We measured tRNA essentiality for cellular growth and found that most proliferation-tRNAs are essential compared to differentiation- tRNAs in rapidly growing cell lines. Yet in more slowly dividing lines, the differentiation-tRNAs were more essential. In addition, we measured the essentiality of each tRNA family upon response to cell cycle arresting signals. Here we detected a more complex behavior with both proliferation-tRNAs and differentiation tRNAs showing various levels of essentiality. These results provide the so-far most comprehensive functional characterization of human tRNAs with intricate roles in various cellular states.


Asunto(s)
Puntos de Control del Ciclo Celular , Proliferación Celular , ARN de Transferencia/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular , Proliferación Celular/genética , Clonación Molecular , Edición Génica , Biblioteca Genómica , Células HeLa , Humanos , ARN de Transferencia/genética
19.
Genetics ; 216(2): 543-558, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32847815

RESUMEN

Tracing evolutionary processes that lead to fixation of genomic variation in wild bacterial populations is a prime challenge in molecular evolution. In particular, the relative contribution of horizontal gene transfer (HGT) vs.de novo mutations during adaptation to a new environment is poorly understood. To gain a better understanding of the dynamics of HGT and its effect on adaptation, we subjected several populations of competent Bacillus subtilis to a serial dilution evolution on a high-salt-containing medium, either with or without foreign DNA from diverse pre-adapted or naturally salt tolerant species. Following 504 generations of evolution, all populations improved growth yield on the medium. Sequencing of evolved populations revealed extensive acquisition of foreign DNA from close Bacillus donors but not from more remote donors. HGT occurred in bursts, whereby a single bacterial cell appears to have acquired dozens of fragments at once. In the largest burst, close to 2% of the genome has been replaced by HGT. Acquired segments tend to be clustered in integration hotspots. Other than HGT, genomes also acquired spontaneous mutations. Many of these mutations occurred within, and seem to alter, the sequence of flagellar proteins. Finally, we show that, while some HGT fragments could be neutral, others are adaptive and accelerate evolution.


Asunto(s)
Bacillus subtilis/genética , Evolución Molecular Dirigida , Transferencia de Gen Horizontal , Tolerancia a la Sal , Bacillus subtilis/metabolismo , Selección Genética
20.
Nat Commun ; 11(1): 3061, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546731

RESUMEN

Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.


Asunto(s)
Sistema de Lectura Ribosómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Fusión gag-pol/genética , Variación Genética , Proteínas Fluorescentes Verdes/genética , VIH-1/genética , Humanos , Células K562 , Proteínas Luminiscentes/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...