Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38341666

RESUMEN

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3ß). GSK3α and GSK3ß are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3ß) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Albúmina Sérica Bovina , Capacitación Espermática , Animales , Femenino , Masculino , Ratones , Calcio/metabolismo , AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mamíferos , Fosforilación , Semen/metabolismo , Albúmina Sérica Bovina/farmacología , Albúmina Sérica Bovina/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo
2.
Curr Issues Mol Biol ; 46(2): 1567-1578, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38392219

RESUMEN

The well-documented relationship between chronological age and the sperm methylome has allowed for the construction of epigenetic clocks that estimate the biological age of sperm based on DNA methylation, which we previously termed sperm epigenetic age (SEA). Our lab demonstrated that SEA is positively associated with the time taken to achieve pregnancy; however, its relationship with semen parameters is unknown. A total of 379 men from the Longitudinal Investigation of Fertility and Environment (LIFE) study, a non-clinical cohort, and 192 men seeking fertility treatment from the Sperm Environmental Epigenetics and Development Study (SEEDS) were included in the study. Semen analyses were conducted for both cohorts, and SEA was previously generated using a machine learning algorithm and DNA methylation array data. Association analyses were conducted via multivariable linear regression models adjusting for BMI and smoking status. We found that SEA was not associated with standard semen characteristics in SEEDS and LIFE cohorts. However, SEA was significantly associated with higher sperm head length and perimeter, the presence of pyriform and tapered sperm, and lower sperm elongation factor in the LIFE study (p < 0.05). Based on our results, SEA is mostly associated with defects in sperm head morphological factors that are less commonly evaluated during male infertility assessments. SEA shows promise to be an independent biomarker of sperm quality to assess male fecundity.

3.
Front Cell Dev Biol ; 11: 1174211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427387

RESUMEN

Background: Infertility remains a global health problem with male-factor infertility accounting for around 50% of cases. Understanding the molecular markers for the male contribution of live birth success has been limited. Here, we evaluated the expression levels of seminal plasma extracellular vesicle (spEV) non-coding RNAs (ncRNAs) in men of couples in relation with those with and without a successful live birth after infertility treatment. Method: Sperm-free spEV small RNA profiles were generated from 91 semen samples collected from male participants of couples undergoing assisted reproductive technology (ART) treatment. Couples were classified into two groups based on successful live birth (yes, n = 28) and (no, n = 63). Mapping of reads to human transcriptomes followed the order: miRNA > tRNA > piRNA > rRNA> "other" RNA > circRNA > lncRNA. Differential expression analysis of biotype-specific normalized read counts between groups were assessed using EdgeR (FDR<0.05). Result: We found a total of 12 differentially expressed spEV ncRNAs which included 10 circRNAs and two piRNAs between the live birth groups. Most (n = 8) of the identified circRNAs were downregulated in the no live birth group and targeted genes related to ontology terms such as negative reproductive system and head development, tissue morphogenesis, embryo development ending in birth or egg hatching, and vesicle-mediated transport. The differentially upregulated piRNAs overlapped with genomic regions including coding PID1 genes previously known to play a role in mitochondrion morphogenesis, signal transduction and cellular proliferation. Conclusion: This study identified novel ncRNAs profiles of spEVs differentiating men of couples with and without live birth and emphasizes the role of the male partner for ART success.

4.
Syst Biol Reprod Med ; 69(4): 296-309, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098216

RESUMEN

Infertility is clinically defined as the inability to achieve pregnancy within 12 months of regular unprotected sexual intercourse and affects 15% of couples worldwide. Therefore, the identification of novel biomarkers that can accurately predict male reproductive health and couples' reproductive success is of major public health significance. The objective of this pilot study is to test whether untargeted metabolomics is capable of discriminating reproductive outcomes and understand associations between the internal exposome of seminal plasma and the reproductive outcomes of semen quality and live birth among ten participants undergoing assisted reproductive technology (ART) in Springfield, MA. We hypothesize that seminal plasma offers a novel biological matrix by which untargeted metabolomics is able to discern male reproductive status and predict reproductive success. The internal exposome data was acquired using UHPLC-HR-MS on randomized seminal plasma samples at UNC at Chapel Hill. Unsupervised and supervised multivariate analyses were used to visualize the differentiation of phenotypic groups classified by men with normal or low semen quality based on World Health Organization guidelines as well as by successful ART: live birth or no live birth. Over 100 exogenous metabolites, including environmentally relevant metabolites, ingested food components, drugs and medications, and metabolites relevant to microbiome-xenobiotic interaction, were identified and annotated from the seminal plasma samples, through matching against the NC HHEAR hub in-house experimental standard library. Pathway enrichment analysis indicated that fatty acid biosynthesis and metabolism, vitamin A metabolism, and histidine metabolism were associated sperm quality; while pathways involving vitamin A metabolism, C21-steroid hormone biosynthesis and metabolism, arachidonic acid metabolism, and Omega-3 fatty acid metabolism distinguished live birth groups. Taken together, these pilot results suggest that seminal plasma is a novel matrix to study the influence of the internal exposome on reproductive health outcomes. Future research aims to increase the sample size to validate these findings.


Asunto(s)
Exposoma , Análisis de Semen , Embarazo , Femenino , Masculino , Humanos , Semen/metabolismo , Proyectos Piloto , Vitamina A/metabolismo
5.
Environ Pollut ; 329: 121529, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003585

RESUMEN

Non-coding RNA (ncRNA) cargo of extracellular vesicles (EVs) in the male reproductive tract play critical roles in semen quality and emerging evidence suggests their susceptibility to environmental factors. Male phthalate exposures have been linked to poor semen quality, sperm DNA methylation profiles and embryo development; however, there is limited evidence on their potential impact on EV ncRNAs profiles. We evaluated the association between urinary phthalate metabolites and small ncRNAs (sncRNAs) of seminal plasma EVs (spEV) among men receiving clinical infertility care. We conducted sncRNA sequencing of EVs in 96 seminal plasma samples collected from the Sperm Environmental Epigenetics and Development Study (SEEDS). Sequencing reads were mapped to human transcriptome databases using STAR. Urinary metabolite concentrations of thirteen phthalates and two DiNCH, a phthalate alternative, were measured via tandem mass spectrometry. Associations with normalized counts were assessed using EdgeR (FDR<0.05) adjusting for urinary dilution via specific gravity, age, BMI, batch, and biotype-specific total counts. Select metabolites, MEOHP, MECPP, ∑DEHP, MCPP, MCNP, MCOP, were negatively (p < 0.05) correlated with miRNA relative abundance. Similarly, nine metabolites including MEOHP, MECPP, MEHP, MCPP, MHBP, MHiNCH, MiBP, MEHHP, MCOP and ∑DEHP were associated (q < 0.05) with normalized counts from 23 unique ncRNA transcripts (7 miRNAs (pre & mature); 6 tRFs; and 10 piRNAs), most (78%) of which displayed increased expression patterns. miRNA and tRFs gene targets were enriched in vesicle-mediated transport and developmental-related ontology terms, such as tyrosine kinase, head development, and cell morphogenesis. Six genes (MAPK1, BMPR1A/2, PTEN, TGFBR2, TP53 and APP) were present in all the ontology terms and predicted to form protein association networks. piRNAs were annotated to pseudogenes of genes important in EV cargo transfer and embryonic development. This is the first study to associate phthalate exposures to altered spEV sncRNA profiles. Future studies are needed to determine their impact on reproductive outcomes.


Asunto(s)
Contaminantes Ambientales , Vesículas Extracelulares , Infertilidad , MicroARNs , Ácidos Ftálicos , ARN Pequeño no Traducido , Embarazo , Femenino , Humanos , Masculino , Análisis de Semen , ARN Pequeño no Traducido/genética , Semillas/química , Ácidos Ftálicos/metabolismo , MicroARNs/genética , Vesículas Extracelulares/metabolismo , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis
6.
Andrology ; 11(7): 1484-1494, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36891737

RESUMEN

BACKGROUND: Phthalates have been linked to adverse male reproductive health, including poor sperm quality and embryo quality as well as a longer time to pregnancy (months of unprotected intercourse before conception occurs). The present study aimed to evaluate the effect of preconception exposure to two ubiquitous phthalate chemicals, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and their mixture on sperm function, fertilization, and embryo development in mice. MATERIALS AND METHODS: Adult male C57BL/6J mice aged 8-9 weeks were exposed to di(2-ethylhexyl) phthalate, di-n-butyl phthalate, or their mixture (di-n-butyl phthalate + di(2-ethylhexyl) phthalate) at 2.5 mg/kg/day or vehicle for 40 days (equivalent to one spermatogenic cycle) via surgically implanted osmotic pumps. Caudal epididymal spermatozoa were extracted and analyzed for motility using computer-assisted sperm analyses. Sperm phosphorylation of protein kinase A substrates and tyrosine phosphorylation, markers of early and late capacitation events, respectively, were analyzed by Western blots. In vitro fertilization was used to evaluate the sperm fertilizing capacity. RESULTS: While the study did not reveal any significant differences in sperm motility and fertilization potential, abnormal sperm morphology was observed in all phthalate exposures, particularly in the phthalate mixture group. In addition, the study revealed significant differences in sperm concentration between control and exposed groups. Moreover, protein phosphorylation of protein kinase A substrates was decreased in the di(2-ethylhexyl) phthalate and mixture exposure groups, while no significant changes in protein tyrosine phosphorylation were observed in any of the groups. Assessment of the reproductive functionality did not reveal significant effects on in vitro fertilization and early embryo development rates but showed wide variability in the phthalate mixture group. CONCLUSION: Our findings suggest that preconception phthalate exposure affects sperm numbers and phosphorylation of protein kinase A substrates involved in capacitation. Future research is warranted to examine the associations between phthalate exposure and capacitation in human spermatozoa.


Asunto(s)
Dibutil Ftalato , Capacitación Espermática , Embarazo , Adulto , Femenino , Masculino , Humanos , Ratones , Animales , Dibutil Ftalato/toxicidad , Dibutil Ftalato/metabolismo , Motilidad Espermática , Ratones Endogámicos C57BL , Semen/metabolismo , Espermatozoides/metabolismo , Tirosina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835604

RESUMEN

Expression analysis of small noncoding RNA (sRNA), including microRNA, piwi-interacting RNA, small rRNA-derived RNA, and tRNA-derived small RNA, is a novel and quickly developing field. Despite a range of proposed approaches, selecting and adapting a particular pipeline for transcriptomic analysis of sRNA remains a challenge. This paper focuses on the identification of the optimal pipeline configurations for each step of human sRNA analysis, including reads trimming, filtering, mapping, transcript abundance quantification and differential expression analysis. Based on our study, we suggest the following parameters for the analysis of human sRNA in relation to categorical analyses with two groups of biosamples: (1) trimming with the lower length bound = 15 and the upper length bound = Read length - 40% Adapter length; (2) mapping on a reference genome with bowtie aligner with one mismatch allowed (-v 1 parameter); (3) filtering by mean threshold > 5; (4) analyzing differential expression with DESeq2 with adjusted p-value < 0.05 or limma with p-value < 0.05 if there is very little signal and few transcripts.


Asunto(s)
ARN Pequeño no Traducido , Humanos , Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Pequeño no Traducido/genética , RNA-Seq , Análisis de Secuencia de ARN
8.
Hum Reprod Update ; 29(1): 24-44, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36066418

RESUMEN

BACKGROUND: Modern reproductive behavior in most developed countries is characterized by delayed parenthood. Older gametes are generally less fertile, accumulating and compounding the effects of varied environmental exposures that are modified by lifestyle factors. Clinicians are primarily concerned with advanced maternal age, while the influence of paternal age on fertility, early development and offspring health remains underappreciated. There is a growing trend to use assisted reproductive technologies for couples of advanced reproductive age. Thus, the number of children born from older gametes is increasing. OBJECTIVE AND RATIONALE: We review studies reporting age-associated epigenetic changes in mammals and humans in sperm, including DNA methylation, histone modifications and non-coding RNAs. The interplay between environment, fertility, ART and age-related epigenetic signatures is explored. We focus on the association of sperm epigenetics on epigenetic and phenotype events in embryos and offspring. SEARCH METHODS: Peer-reviewed original and review articles over the last two decades were selected using PubMed and the Web of Science for this narrative review. Searches were performed by adopting the two groups of main terms. The first group included 'advanced paternal age', 'paternal age', 'postponed fatherhood', 'late fatherhood', 'old fatherhood' and the second group included 'sperm epigenetics', 'sperm', 'semen', 'epigenetic', 'inheritance', 'DNA methylation', 'chromatin', 'non-coding RNA', 'assisted reproduction', 'epigenetic clock'. OUTCOMES: Age is a powerful factor in humans and rodent models associated with increased de novo mutations and a modified sperm epigenome. Age affects all known epigenetic mechanisms, including DNA methylation, histone modifications and profiles of small non-coding (snc)RNA. While DNA methylation is the most investigated, there is a controversy about the direction of age-dependent changes in differentially hypo- or hypermethylated regions with advanced age. Successful development of the human sperm epigenetic clock based on cross-sectional data and four different methods for DNA methylation analysis indicates that at least some CpG exhibit a linear relationship between methylation levels and age. Rodent studies show a significant overlap between genes regulated through age-dependent differentially methylated regions and genes targeted by age-dependent sncRNA. Both age-dependent epigenetic mechanisms target gene networks enriched for embryo developmental, neurodevelopmental, growth and metabolic pathways. Thus, age-dependent changes in the sperm epigenome cannot be described as a stochastic accumulation of random epimutations and may be linked with autism spectrum disorders. Chemical and lifestyle exposures and ART techniques may affect the epigenetic aging of sperm. Although most epigenetic modifications are erased in the early mammalian embryo, there is growing evidence that an altered offspring epigenome and phenotype is linked with advanced paternal age due to the father's sperm accumulating epigenetic changes with time. It has been hypothesized that age-induced changes in the sperm epigenome are profound, physiological and dynamic over years, yet stable over days and months, and likely irreversible. WIDER IMPLICATIONS: This review raises a concern about delayed fatherhood and age-associated changes in the sperm epigenome that may compromise reproductive health of fathers and transfer altered epigenetic information to subsequent generations. Prospective studies using healthy males that consider confounders are recommended. We suggest a broader discussion focused on regulation of the father's age in natural and ART conceptions is needed. The professional community should be informed and should raise awareness in the population and when counseling older men.


Asunto(s)
Epigénesis Genética , Espermatozoides , Masculino , Animales , Niño , Humanos , Anciano , Estudios Prospectivos , Estudios Transversales , Espermatozoides/metabolismo , Mamíferos/genética , ARN no Traducido , ADN
9.
Andrology ; 11(4): 677-686, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36111950

RESUMEN

BACKGROUND: Currently, the precise mechanisms that underline male infertility are still unclear. Accumulating data implicate non-coding RNA cargo of seminal plasma extracellular vesicles due to their association with poor semen quality and higher expression levels relative to vesicle-free seminal plasma. METHOD: We assessed sperm-free seminal plasma extracellular vesicle non-coding RNA profiles from 91 semen samples collected from male participants of couples seeking infertility treatment. Men were classified into two groups (poor, n = 32; normal, n = 59) based on World Health Organization semen cutoffs. Small RNA sequencing reads were mapped to standard biotype-specific transcriptomes in the order micro RNA > transfer RNA > piwi-interacting RNA > ribosomal RNA  > ribosomal RNA > circular RNA > long non-coding RNA using STAR. Differential expression of normalized non-coding RNA read counts between the two groups was conducted by EdgeR (Fold change ≥1.5 and (false discovery rate [FDR] < 0.05). RESULT: Small RNA sequencing identified a wide variety of seminal plasma extracellular vesicle non-coding RNA biotypes including micro RNA, ribosomal RNAs, piwi-interacting RNAs, transfer RNA, long non-coding RNAs as well as circular RNAs, and fragments associated with pseudogenes, and nonsense-mediated decay. The expression levels of 57 seminal plasma extracellular vesicle non-coding RNAs (micro RNA: 6, piwi-interacting RNA: 4, ribosomal RNA: 6, circular RNA: 34, and long non-coding RNA: 7) were altered in men with poor semen quality relative to normal semen parameters, many (60%) of which were circular RNA species. Ontology analysis of differentially expressed micro RNAs and circular RNAs showed enrichment in functional terms related to cellular communication and early development. CONCLUSION: This is the first study to generate comprehensive seminal plasma extracellular vesicle non-coding RNA profiles in a clinical setting and to determine the differences between men with normal and abnormal semen parameters. Thus, our study suggests that seminal plasma extracellular vesicle non-coding RNAs may represent novel biomarkers of male reproductive phenotypes.


Asunto(s)
Vesículas Extracelulares , Infertilidad Masculina , MicroARNs , ARN Largo no Codificante , Humanos , Masculino , Análisis de Semen , Semen/metabolismo , ARN Circular , ARN Largo no Codificante/metabolismo , Infertilidad Masculina/metabolismo , Fertilización In Vitro , MicroARNs/metabolismo , ARN Ribosómico/metabolismo
10.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430706

RESUMEN

Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Humanos , Masculino , Éteres Difenilos Halogenados/toxicidad , Epigénesis Genética , Semen/metabolismo , Retardadores de Llama/toxicidad
11.
Environ Res ; 214(Pt 4): 114115, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35988832

RESUMEN

INTRODUCTION: We have recently shown that sperm epigenetic age (SEA), a surrogate measure of biological aging in sperm, is associated with couples' time-to-pregnancy (TTP). Advanced SEA was also observed among smokers, suggesting its susceptibility to environmental exposures. Therefore, we assessed the association between urinary phthalate metabolites and SEA in male partners of couples planning to conceive among the general population. METHOD: The Longitudinal Investigation of Fertility and the Environment (LIFE) Study was a prospective multi-site and general population cohort study of couples who were interested in becoming pregnant. Among male partners (n = 333), eleven urinary phthalate metabolites were measured and SEA was previously developed using Super Learner ensemble algorithm. Multivariable linear regression was used to evaluate associations of SEA with individual metabolites. Bayesian kernel machine regression (BKMR), quantile g-computation (qgcomp) and weighted quantile sum (WQS) models were used for mixture analyses. Covariates included were BMI, cotinine, race and urinary creatinine. RESULT: In the single metabolite multivariate analyses, nine (82%) phthalate metabolites displayed positive trends with SEA (range: 0.05-0.47 years). Of these metabolites, advanced SEA was significantly associated with interquartile range increases in exposure of three phthalates [MEHHP (ß = 0.23, 95% CI: 0.03, 0.43, p = 0.03), MMP (ß = 0.24, 95% CI: 0.01, 0.47, p = 0.04), and MiBP (ß = 0.47, 95% CI: 0.14, 0.81, p = 0.01)]. Additionally, in BKMR and qgcomp (p = 0.06), but not WQS models, phthalate mixtures showed an overall positive trend with SEA, with MiBP, MMP and MBzP as major drivers of the mixture effects. CONCLUSION: This is the first study that combined single exposure and mixture models to associate male phthalate exposures with advanced epigenetic aging of sperm in men planning to conceive among the general population. Our findings suggest that phthalate exposure may contribute to the acceleration of biological aging of sperm.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Envejecimiento , Teorema de Bayes , Estudios de Cohortes , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/orina , Epigénesis Genética , Femenino , Humanos , Masculino , Ácidos Ftálicos/orina , Embarazo , Estudios Prospectivos , Semen , Espermatozoides
12.
Bioinformatics ; 38(20): 4820-4822, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36028931

RESUMEN

MOTIVATION: A wide range of computational packages has been developed for regional DNA methylation analyses of Illumina's Infinium array data. Aclust, one of the first unsupervised algorithms, was originally designed to analyze regional methylation of Infinium's 27K and 450K arrays by clustering neighboring methylation sites prior to downstream analyses. However, Aclust relied on outdated packages that rendered it largely non-operational especially with the newer Infinium EPIC and mouse arrays. RESULTS: We have created Aclust2.0, a streamlined pipeline that involves five steps for the analyses of human (450K and EPIC) and mouse array data. Aclust2.0 provides a user-friendly pipeline and versatile for regional DNA methylation analyses for molecular epidemiological and mouse studies. AVAILABILITY AND IMPLEMENTATION: Aclust2.0 is freely available on Github (https://github.com/OluwayioseOA/Alcust2.0.git).


Asunto(s)
Metilación de ADN , Análisis de Datos , Animales , Islas de CpG , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Procesamiento Proteico-Postraduccional
13.
Noncoding RNA ; 8(3)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35645337

RESUMEN

Transcriptomics analysis of various small RNA (sRNA) biotypes is a new and rapidly developing field. Annotations for microRNAs, tRNAs, piRNAs and rRNAs contain information on transcript sequences and loci that is vital for downstream analyses. Several databases have been established to provide this type of data for specific RNA biotypes. However, these sources often contain data in different formats, which makes the bulk analysis of several sRNA biotypes in a single pipeline challenging. Information on some transcripts may be incomplete or conflicting with other entries. To overcome these challenges, we introduce ITAS, or Integrated Transcript Annotation for Small RNA, a filtered, corrected and integrated transcript annotation containing information on several types of small RNAs, including tRNA-derived small RNA, for several species (Homo sapiens, Rattus norvegicus, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans). ITAS is presented in a format applicable for the vast majority of bioinformatic transcriptomics analysis, and it was tested in several case studies for human-derived data against existing alternative databases.

14.
Hum Reprod ; 37(7): 1581-1593, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35552703

RESUMEN

STUDY QUESTION: Is sperm epigenetic aging (SEA) associated with probability of pregnancy among couples in the general population? SUMMARY ANSWER: We observed a 17% lower cumulative probability at 12 months for couples with male partners in the older compared to the younger SEA categories. WHAT IS KNOWN ALREADY: The strong relation between chronological age and DNA methylation profiles has enabled the estimation of biological age as epigenetic 'clock' metrics in most somatic tissue. Such clocks in male germ cells are less developed and lack clinical relevance in terms of their utility to predict reproductive outcomes. STUDY DESIGN, SIZE, DURATION: This was a population-based prospective cohort study of couples discontinuing contraception to become pregnant recruited from 16 US counties from 2005 to 2009 and followed for up to 12 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm DNA methylation from 379 semen samples was assessed via a beadchip array. A state-of-the-art ensemble machine learning algorithm was employed to predict age from the sperm DNA methylation data. SEA was estimated from clocks derived from individual CpGs (SEACpG) and differentially methylated regions (SEADMR). Probability of pregnancy within 1 year was compared by SEA, and discrete-time proportional hazards models were used to evaluate the relations with time-to-pregnancy (TTP) with adjustment for covariates. MAIN RESULTS AND THE ROLE OF CHANCE: Our SEACpG clock had the highest predictive performance with correlation between chronological and predicted age (r = 0.91). In adjusted discrete Cox models, SEACpG was negatively associated with TTP (fecundability odds ratios (FORs)=0.83; 95% CI: 0.76, 0.90; P = 1.2×10-5), indicating a longer TTP with advanced SEACpG. For subsequent birth outcomes, advanced SEACpG was associated with shorter gestational age (n = 192; -2.13 days; 95% CI: -3.67, -0.59; P = 0.007). Current smokers also displayed advanced SEACpG (P < 0.05). Finally, SEACpG showed a strong performance in an independent IVF cohort (n = 173; r = 0.83). SEADMR performance was comparable to SEACpG but with attenuated effect sizes. LIMITATIONS, REASONS FOR CAUTION: This prospective cohort study consisted primarily of Caucasian men and women, and thus analysis of large diverse cohorts is necessary to confirm the associations between SEA and couple pregnancy success in other races/ethnicities. WIDER IMPLICATIONS OF THE FINDINGS: These data suggest that our sperm epigenetic clocks may have utility as a novel biomarker to predict TTP among couples in the general population and underscore the importance of the male partner for reproductive success. STUDY FUNDING/COMPETING INTEREST(S): This work was funded in part by grants the National Institute of Environmental Health Sciences, National Institutes of Health (R01 ES028298; PI: J.R.P. and P30 ES020957); Robert J. Sokol, MD Endowed Chair of Molecular Obstetrics and Gynecology (J.R.P.); and the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (Contracts N01-HD-3-3355, N01-HD-3-3356 and N01-HD-3-3358). S.L.M. was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Resultado del Embarazo , Semen , Niño , Epigénesis Genética , Femenino , Humanos , Masculino , Embarazo , Estudios Prospectivos , Espermatozoides , Tiempo para Quedar Embarazada
15.
Syst Biol Reprod Med ; 67(3): 230-243, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34082629

RESUMEN

Recent studies demonstrate that sperm epigenome is a vehicle that conveys paternal experiences to offspring phenotype. That evidence triggers interest of both experimental and epidemiological studies of epigenetic markers in sperm. Since samples are often unique in epidemiological studies, a careful and efficient use of the material is a critical requirement. The goal of this study was to provide optimization of methods for the isolation of small RNAs from spermatozoa and library preparation for sequencing. A total 67 fractionated sperm samples from the Russian Children's Study biobank prospectively collected at 18-20 years of age were used to isolate small RNAs with median (IQR) input total sperm count 17.0 (7.4-35.9) million. Twenty-four pairs of libraries were prepared using the NEBNext and NEXTFlex kits, 19 libraries using NEBNext and 6 using NEXTFlex. All libraries were sequenced on NextSeq 500, and the results were evaluated as a function of the number of small non-coding RNA (sncRNA) detected, quality parameters of sequencing libraries, as well as technical features of sample preparation. Although the same amount of miRNA input was used for NEBNext and NEXTFlex libraries, the concentration of DNA in NEBNext libraries was significantly higher in comparison with NEXTFlex libraries. In high input (sperm count >28 million and more than 25 ng miRNA in library) NEXTFlex Small RNA-Seq kit detected more microRNAs. In low input, the NEBNext proved more effective. The tricks and traps to protocol optimization are presented, including an efficient and effector gel-based system for the removal of sequencing library adaptors.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs , Biblioteca de Genes , Humanos , Masculino , Análisis de Secuencia de ARN , Espermatozoides
16.
Syst Biol Reprod Med ; 67(2): 103-111, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33630671

RESUMEN

The molecular composition of extracellular vesicles (EVs) is emerging as a novel biomarker in many areas of research including reproductive health. EVs transport biological molecules such as RNA and protein to facilitate cell-to-cell communication among cells of the male reproductive tract. Human and animal studies have shown that EVs present in seminal plasma or in the male reproductive tract contain important cargo that are important for successful reproductive outcomes. Small non-coding RNAs (sncRNA) have been at the forefront of this research, and as such, they have the potential to serve as novel biomarkers of male infertility diagnosis and reproductive success. This review provides an overview of EV biosynthesis and examines the molecular payloads of seminal plasma EVs on male infertility and reproductive success as well as future research that is warranted to examine how these molecular payloads may be modified by environmental factors.


Asunto(s)
Vesículas Extracelulares , Infertilidad Masculina , Animales , Biomarcadores , Comunicación Celular , Humanos , Masculino , Reproducción , Semen
17.
Sci Rep ; 11(1): 3216, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547328

RESUMEN

Parental age at time of offspring conception is increasing in developed countries. Advanced male age is associated with decreased reproductive success and increased risk of adverse neurodevelopmental outcomes in offspring. Mechanisms for these male age effects remain unclear, but changes in sperm DNA methylation over time is one potential explanation. We assessed genome-wide methylation of sperm DNA from 47 semen samples collected from male participants of couples seeking infertility treatment. We report that higher male age was associated with lower likelihood of fertilization and live birth, and poor embryo development (p < 0.05). Furthermore, our multivariable linear models showed male age was associated with alterations in sperm methylation at 1698 CpGs and 1146 regions (q < 0.05), which were associated with > 750 genes enriched in embryonic development, behavior and neurodevelopment among others. High dimensional mediation analyses identified four genes (DEFB126, TPI1P3, PLCH2 and DLGAP2) with age-related sperm differential methylation that accounted for 64% (95% CI 0.42-0.86%; p < 0.05) of the effect of male age on lower fertilization rate. Our findings from this modest IVF population provide evidence for sperm methylation as a mechanism of age-induced poor reproductive outcomes and identifies possible candidate genes for mediating these effects.


Asunto(s)
Metilación de ADN , Infertilidad Masculina/genética , Técnicas Reproductivas Asistidas , Espermatozoides/metabolismo , Adulto , Factores de Edad , Desarrollo Embrionario , Femenino , Humanos , Masculino , Persona de Mediana Edad , Embarazo , Resultado del Embarazo , Reproducción , Adulto Joven
18.
Epigenomics ; 13(4): 285-297, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401928

RESUMEN

Aims: Paternal age is increasing in developed countries. Understanding of aging-related epigenetic changes in sperm is needed as well as factors that modify such changes. Materials & methods: Young pubertal and mature rats were exposed perinatally to vehicle or environmental xenobiotic 2,2',4,4'-tetrabromodiphenyl ether. Epididymal sperm was reduced representation bisulfite sequenced. Differentially methylated regions (DMRs) were identified via MethPipe. Results: In control animals, 5319 age-dependent DMRs were identified. Age-related DMRs were enriched for embryonic development. In exposed rats, DNA methylation was higher in young and lower in mature animals then in controls. Conclusions: Sperm methylome undergoes significant age-dependent changes, which may represent a causal link between paternal age and offspring phenotype. Environmental xenobiotics can interfere with the natural process of epigenetic aging.


Asunto(s)
Envejecimiento/fisiología , Metilación de ADN/efectos de los fármacos , Retardadores de Llama/efectos adversos , Espermatozoides/efectos de los fármacos , Animales , Desarrollo Embrionario/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Epigenoma/efectos de los fármacos , Epigenómica/métodos , Femenino , Masculino , Parto/efectos de los fármacos , Edad Paterna , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Wistar
19.
Epigenomics ; 12(24): 2141-2153, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320694

RESUMEN

Aim: Accumulating evidence associates sperm mitochondria DNA copy number (mtDNAcn) with male infertility and reproductive success. However, the mechanism underlying mtDNAcn variation is largely unknown. Patients & methods: Sperm mtDNAcn and genome-wide DNA methylation were assessed using triplex probe-based quantitative PCR and Illumina's 450K array, respectively. Multivariable models assessed the association between sperm mtDNAcn and DNA methylation profiles of 47 men seeking infertility treatment. Results: A priori candidate-gene approach showed sperm mtDNAcn was associated with 16 CpGs located at/near POLG and TWNK genes. Unbiased genome-wide analysis revealed that sperm mtDNAcn was associated with 218 sperm differentially methylated regions (q < 0.05), which displayed predominantly (94%) increases in methylation. Conclusion: Findings suggest that DNA methylation may play a role in regulating sperm mtDNAcn.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , ADN Mitocondrial/genética , Infertilidad Masculina/genética , Espermatozoides , Adulto , Biomarcadores , Núcleo Celular/genética , Islas de CpG , Impresión Genómica , Humanos , Masculino
20.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158036

RESUMEN

Advanced paternal age at fertilization is a risk factor for multiple disorders in offspring and may be linked to age-related epigenetic changes in the father's sperm. An understanding of aging-related epigenetic changes in sperm and environmental factors that modify such changes is needed. Here, we characterize changes in sperm small non-coding RNA (sncRNA) between young pubertal and mature rats. We also analyze the modification of these changes by exposure to environmental xenobiotic 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). sncRNA libraries prepared from epididymal spermatozoa were sequenced and analyzed using DESeq 2. The distribution of small RNA fractions changed with age, with fractions mapping to rRNA and lncRNA decreasing and fractions mapping to tRNA and miRNA increasing. In total, 249 miRNA, 908 piRNA and 227 tRNA-derived RNA were differentially expressed (twofold change, false discovery rate (FDR) p ≤ 0.05) between age groups in control animals. Differentially expressed miRNA and piRNA were enriched for protein-coding targets involved in development and metabolism, while piRNA were enriched for long terminal repeat (LTR) targets. BDE-47 accelerated age-dependent changes in sncRNA in younger animals, decelerated these changes in older animals and increased the variance in expression of all sncRNA. Our results indicate that the natural aging process has profound effects on sperm sncRNA profiles and this effect may be modified by environmental exposure.


Asunto(s)
Envejecimiento/fisiología , Exposición a Riesgos Ambientales , Retardadores de Llama/toxicidad , ARN Pequeño no Traducido/genética , Espermatozoides/metabolismo , Animales , Animales Recién Nacidos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Parto/efectos de los fármacos , Parto/genética , Parto/metabolismo , Edad Paterna , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , ARN Pequeño no Traducido/metabolismo , Ratas , Ratas Wistar , Espermatozoides/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...