Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Xenobiotica ; : 1-16, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733255

RESUMEN

Antibody-drug conjugates (ADCs) are an important class of cancer therapies. They are complex molecules, comprising an antibody, a cytotoxic payload, and a linker. ADCs intend to confer high specificity by targeting a unique antigen expressed predominately on the surface of the tumor cells than on the normal cells and by releasing the potent cytotoxic drug inside the tumor causing cytotoxic cell death. Despite high specificity to tumor antigens, many ADCs are associated with off-target and on-target off-tumor toxicities, often leading to safety concerns before achieving the desirable clinical efficacy. Therefore, it is crucial to improve the therapeutic index (TI) of ADCs to enable the full potential of this important therapeutic modality.The review summarizes current approaches to improve the translation of safety, pharmacokinetics, and TI of ADCs. Common safety findings of ADCs resulting from off-target and on-target toxicities and nonclinical approaches to de-risk ADC safety will be discussed; multiple approaches of using preclinical and clinical dose and exposure data to calculate TI to guide clinical dosing will be elaborated; different approaches to improve TI of ADCs, including selecting the right target, right payload-linker and patients, optimizing physicochemical properties, and using fractionation dosing, will also be discussed.

2.
MAbs ; 16(1): 2318817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444390

RESUMEN

Bispecific antibodies (BsAbs) capable of recognizing two distinct epitopes or antigens offer promising therapeutic options for various diseases by targeting multiple pathways. The favorable pharmacokinetic (PK) properties of monoclonal antibodies (mAbs) are crucial, as they directly influence patient safety and therapeutic efficacy. For numerous mAb therapeutics, optimization of neonatal Fc receptor (FcRn) interactions and elimination of unfavorable molecular properties have led to improved PK properties. However, many BsAbs exhibit unfavorable PK, which has precluded their development as drugs. In this report, we present studies on the molecular determinants underlying the distinct PK profiles of three IgG1-scFv BsAbs. Our study indicated that high levels of nonspecific interactions, elevated isoelectric point (pI), and increased number of positively charged patches contributed to the fast clearance of IgG1-scFv. FcRn chromatography results revealed specific scFv-FcRn interactions that are unique to the IgG1-scFv, which was further supported by molecular dynamics (MD) simulation. These interactions likely stabilize the BsAb FcRn interaction at physiological pH, which in turn could disrupt FcRn-mediated BsAb recycling. In addition to the empirical observations, we also evaluated the impact of in silico properties, including pI differential between the Fab and scFv and the ratio of dipole moment to hydrophobic moment (RM) and their correlation with the observed clearance. These findings highlight that the PK properties of BsAbs may be governed by novel determinants, owing to their increased structural complexity compared to immunoglobulin G (IgG) 1 antibodies.


Asunto(s)
Anticuerpos Biespecíficos , Recién Nacido , Humanos , Anticuerpos Monoclonales , Epítopos , Inmunoglobulina G , Punto Isoeléctrico
3.
Adv Ther ; 41(1): 364-378, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971653

RESUMEN

INTRODUCTION: Accurate predictions of pharmacokinetics and efficacious doses for biologics in humans are critical for selecting appropriate first-in-human starting doses and dose ranges and for estimating clinical material needs and cost of goods. This also impacts clinical feasibility, particularly for subcutaneously administered biologics. METHODS: We performed a comprehensive comparison between predicted and observed clearances and doses in humans for a set of 22 biologic drugs developed at Boehringer Ingelheim (BI) over the last 2 decades. The analysis included biologics across three therapeutic areas comprising a wide variety of modalities: mono- and bispecific monoclonal antibodies (mAbs) and nanobodies and a Fab fragment. RESULTS: Our analysis showed that observed clearances in humans were within twofold of predicted clearances for 17 out of 20 biologics (85%). Six biologics had uncharacteristically high observed human clearances (range 32-280 mL/h) for their respective molecular classes, impacting their clinical developability. For three molecules, molecular characteristics contributed to the high clearance. Clinically selected doses were within twofold of predicted for 58% of projects. With 42% and 25% of projects selecting clinical doses higher than two- or threefold the predicted value, respectively, the importance of better understanding not only the pharmacokinetic (PK) but also the predictivity of pharmacodynamic models is highlighted. CONCLUSIONS: We provide a clinical pharmacology perspective on the commonly accepted twofold range of human clearance predictions as well as the implications of higher than predicted targeted efficacious plasma concentration on clinical development. Finally, an analysis of key success factors for biologics at BI was conducted, which may be relevant for the entire pharmaceutical industry. This is one of the largest retrospective analyses for biologics and provides further evidence that successful predictions of human PK and efficacious dose will be further facilitated by gathering key translational data early in research.


Asunto(s)
Anticuerpos Biespecíficos , Productos Biológicos , Humanos , Productos Biológicos/uso terapéutico , Estudios Retrospectivos , Relación Dosis-Respuesta a Droga
4.
Front Pharmacol ; 14: 1163432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408756

RESUMEN

Although immune checkpoint blockade therapies have shown evidence of clinical effectiveness in many types of cancer, the outcome of clinical trials shows that very few patients with colorectal cancer benefit from treatments with checkpoint inhibitors. Bispecific T cell engagers (TCEs) are gaining popularity because they can improve patients' immunological responses by promoting T cell activation. The possibility of combining TCEs with checkpoint inhibitors to increase tumor response and patient survival has been highlighted by preclinical and clinical outcomes. However, identifying predictive biomarkers and optimal dose regimens for individual patients to benefit from combination therapy remains one of the main challenges. In this article, we describe a modular quantitative systems pharmacology (QSP) platform for immuno-oncology that includes specific processes of immune-cancer cell interactions and was created based on published data on colorectal cancer. We generated a virtual patient cohort with the model to conduct in silico virtual clinical trials for combination therapy of a PD-L1 checkpoint inhibitor (atezolizumab) and a bispecific T cell engager (cibisatamab). Using the model calibrated against the clinical trials, we conducted several virtual clinical trials to compare various doses and schedules of administration for two drugs with the goal of therapy optimization. Moreover, we quantified the score of drug synergy for these two drugs to further study the role of the combination therapy.

5.
ACS Pharmacol Transl Sci ; 4(1): 213-225, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615174

RESUMEN

Progress in immunotherapy has resulted in explosively increased new therapeutic interventions and they have shown promising results in the treatment of cancer. Animal testing is performed to provide preliminary efficacy and safety data for drugs under development prior to clinical trials. However, translational challenges remain for preclinical studies such as study design and the relevance of animal models to humans. Hence, only a small fraction of cancer patients showed response. The explosion of drug candidates and therapies makes preclinical assessment of every plausible option impossible, but it can be easily tested using Quantitative System Pharmacology (QSP) models. Here, we developed a QSP model for humanized mice. Tumor growth dynamics, T cell dynamics, cytokine release, immune checkpoint expression, and drug administration were modeled and calibrated using experimental data. Tumor growth inhibition data were used for model validation. Pharmacokinetics of T cell engager (TCE), tumor growth profile, T cell expansion in the blood and infiltration into tumor, T cell dissemination from primary tumor, cytokine release profile, and expression of additional PD-L1 induced by IFN-γ were modeled and calibrated using a variety of experimental data and showed good consistency. Mouse-specific response to T cell engager monotherapy also showed the key features of in vivo efficacy of TCE. This novel QSP model, designed for human peripheral blood mononuclear cells (PBMC) engrafted xenograft mice, incorporating the most critical components of the mouse model with key cancer and immune cells, can become an integral part of preclinical drug development.

6.
J Pharmacokinet Pharmacodyn ; 46(6): 513-529, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31396799

RESUMEN

The primary goal of this work was to develop a computational tool to enable personalized prediction of pharmacological disposition and associated responses for opioids and antidotes. Here we present a computational framework for physiologically-based pharmacokinetic (PBPK) modeling of an opioid (morphine) and an antidote (naloxone). At present, the model is solely personalized according to an individual's mass. These PK models are integrated with a minimal pharmacodynamic model of respiratory depression induction (associated with opioid administration) and reversal (associated with antidote administration). The model was developed and validated on human data for IV administration of morphine and naloxone. The model can be further extended to consider different routes of administration, as well as to study different combinations of opioid receptor agonists and antagonists. This work provides the framework for a tool that could be used in model-based management of pain, pharmacological treatment of opioid addiction, appropriate use of antidotes for opioid overdose and evaluation of abuse deterrent formulations.


Asunto(s)
Analgésicos Opioides/efectos adversos , Analgésicos Opioides/farmacocinética , Antídotos/efectos adversos , Antídotos/farmacocinética , Analgésicos Opioides/administración & dosificación , Antídotos/administración & dosificación , Humanos , Masculino , Morfina/efectos adversos , Morfina/farmacocinética , Naloxona/administración & dosificación , Naloxona/efectos adversos , Naloxona/farmacocinética , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/efectos adversos , Antagonistas de Narcóticos/farmacocinética , Trastornos Relacionados con Opioides/tratamiento farmacológico , Dolor/tratamiento farmacológico , Receptores Opioides/metabolismo
7.
Bull Math Biol ; 80(4): 880-905, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29520569

RESUMEN

Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin-angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quantitative descriptions of glucose dose dependency of ANG II are scarce in the literature. For better understanding of the mechanism of glycemic injury in DKD, a mathematical model is developed to describe the glucose-stimulated local RAS in podocytes. The model of the RAS signaling pathway in podocytes tracks peptides and enzymes without explicit glucose dependence. Local and global sensitivity analyses are used to identify the key parameters to be estimated in the model. Three approaches are explored to incorporate glucose dependency through linear ramp functions for the sensitive parameters. The first approach uses inferences from literature data to estimate the parameter values, while the other approaches reduce the number of assumptions by using least-squares regression to estimate all or a subset of the parameters. Physiological parameter values and RAS peptide concentrations ranges are used to discriminate between plausible models for the glucose dose dependency. This is the first model of the theory of the local RAS mechanism specific to podocyte cells to track ANG II levels in a range of glycemic conditions that may contribute to podocyte damage in DKD. The ability to track ANG II behavior could enable prediction of its downstream effects on podocytes and provide opportunities to better characterize pathophysiological features of DKD progression.


Asunto(s)
Glucosa/metabolismo , Modelos Biológicos , Podocitos/metabolismo , Sistema Renina-Angiotensina/fisiología , Angiotensina II/metabolismo , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Humanos , Conceptos Matemáticos , Transducción de Señal
8.
Processes (Basel) ; 5(4)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34993126

RESUMEN

Tuberculosis (TB) is one of the most common infectious diseases worldwide. It is estimated that one-third of the world's population is infected with TB. Most have the latent stage of the disease that can later transition to active TB disease. TB is spread by aerosol droplets containing Mycobacterium tuberculosis (Mtb). Mtb bacteria enter through the respiratory system and are attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease in a process called granuloma activation when the granulomas are compromised by other immune response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1 (MMP-1) has been recently implicated in granuloma activation through experimental studies, but the mechanism is not well understood. Animal and human studies currently cannot probe the dynamics of activation, so a computational model is developed to fill this gap. This dynamic mathematical model focuses specifically on the latent to active transition after the initial immune response has successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated in response to the MMP-1 dynamics under several scenarios for granuloma activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...