Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Genet ; 10(2): e200135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38496361

RESUMEN

Background and Objectives: Pathogenic variants in PI3K-AKT-mTOR pathway and GATOR1 complex genes resulting in hyperactivation of mechanistic target of rapamycin (mTOR) complex 1 are a major cause of drug-resistant epilepsy and focal cortical malformations (FCM). Resective neurosurgery is often required to achieve seizure control in patients with mTORopathies due to lack of effectiveness of nonsurgical therapies, including antiseizure medication and mTOR inhibitors. Elevated hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4) has been proposed as a key marker in some mTOR-related brain malformations. This study aimed to investigate HCN4 as a biomarker in the brain across the genetic spectrum of mTORopathies in humans. Methods: Our study investigated the relative steady-state levels and cellular localization of HCN4 in resected human brain tissue from 18 individuals with mTORopathies (3 individuals with tuberous sclerosis complex (TSC) due to TSC2 variants, 5 individuals with focal cortical dysplasia type IIA (FCD IIA) due to genetic variants in MTOR, AKT3, and PIK3CA, and 10 individuals with FCD IIB due to variants in TSC1, MTOR, RHEB, DEPDC5, or NPRL3). Results: Elevated HCN4 was observed to be highly restricted to abnormal cell types (dysmorphic neurons and balloon cells) in brain tissue from all mTORopathy tissues (p < 0.0001) compared with those in controls, regardless of genetic cause or variant allele frequency. Elevated HCN4 was not observed in controls or individuals with non-mTOR-related focal epilepsy due to pathogenic variants in ATP1A3, SLC35A2, or FGFR1. Discussion: HCN4 provides a biomarker for the genetic spectrum of mTORopathies and may present a potential therapeutic target for seizure control in mTOR-related epilepsy.

2.
Front Pharmacol ; 14: 1159527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234718

RESUMEN

Changes in Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) channel function have been linked to depressive-like traits, making them potential drug targets. However, there is currently no peer-reviewed data supporting the use of a small molecule modulator of HCN channels in depression treatment. Org 34167, a benzisoxazole derivative, has been patented for the treatment of depression and progressed to Phase I trials. In the current study, we analysed the biophysical effects of Org 34167 on HCN channels in stably transfected human embryonic kidney 293 (HEK293) cells and mouse layer V neurons using patch-clamp electrophysiology, and we utilised three high-throughput screens for depressive-like behaviour to assess the activity of Org 34167 in mice. The impact of Org 34167 on locomotion and coordination were measured by performing rotarod and ledged beam tests. Org 34167 is a broad-spectrum inhibitor of HCN channels, slowing activation and causing a hyperpolarising shift in voltage-dependence of activation. It also reduced I h-mediated sag in mouse neurons. Org 34167 (0.5 mg/kg) reduced marble burying and increased the time spent mobile in the Porsolt swim and tail suspension tests in both male and female BALB/c mice, suggesting reduced depressive-like behaviour. Although no adverse effects were seen at 0.5 mg/kg, an increase in dose to 1 mg/kg resulted in visible tremors and impaired locomotion and coordination. These data support the premise that HCN channels are valid targets for anti-depressive drugs albeit with a narrow therapeutic index. Drugs with higher HCN subtype selectivity are needed to establish if a wider therapeutic window can be obtained.

3.
J Neurosci ; 43(12): 2199-2209, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813574

RESUMEN

Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.


Asunto(s)
Epilepsia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Humanos , Masculino , Femenino , Ratones , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Retina/metabolismo , Electrorretinografía , Epilepsia/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Canales de Potasio/fisiología
4.
Elife ; 112022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102385

RESUMEN

A neural pathway involved in goal-oriented behaviours becomes dysregulated during binge drinking and alcohol use disorder.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Encéfalo/metabolismo , Etanol , Humanos
5.
Brain ; 144(7): 2060-2073, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33822003

RESUMEN

Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.


Asunto(s)
Encefalopatías/metabolismo , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Animales , Encefalopatías/genética , Epilepsia/genética , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Mutantes , Mutación , Neuronas/patología , Canales de Potasio/genética , Células Piramidales/metabolismo , Xenopus laevis
6.
Epilepsy Res ; 168: 106484, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33099130

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated in the pathogenesis of epilepsy and consequently as targets for anticonvulsant drugs. Consistent with this, broad-spectrum block of HCN-mediated current (Ih) reduces seizure susceptibility in a variety of epilepsy models. However, HCN channel isoforms have distinct biophysical characteristics and anatomical expression suggesting that they may play different roles in setting neuronal excitability. Here we confirm that the broad-spectrum blocker ivabradine is effective at reducing seizure susceptibility in the s.c.PTZ seizure assay and extend this, showing efficacy of this drug in a thermogenic assay that models febrile seizures. Ivabradine is also effective at reducing thermogenic seizures in the Scn1a mouse model of Dravet syndrome in which febrile seizures are a feature. HCN isoform-preferring drugs were tested in the s.c.PTZ seizure assay. We confirm that the HCN4-preferring drug, EC18, is efficacious in reducing seizure susceptibility. Conversely, the HCN2/1-preferring drug, MEL55A, increased seizure susceptibility in the s.c.PTZ seizure assay. MEL57A, an HCN1-preferring drug, had no effect on seizure susceptibility. Mouse pharmacokinetic studies (for MEL55A and MEL57A) and screening against additional ion channels have not been thoroughly investigated on the HCN isoform-preferring compounds. Our results need to be considered in this light. Nevertheless, these data suggest that HCN isoform-selective block can have a differential impact on seizure susceptibility. This motivates the need to develop more HCN isoform-selective compounds to better explore this idea.


Asunto(s)
Anticonvulsivantes/farmacología , Benzazepinas/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Isoformas de Proteínas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(33): 16577-16582, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31371505

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disorder caused by the loss of midbrain dopamine (DA) neurons. While the cause of DA cell loss in PD is unknown, male sex is a strong risk factor. Aside from the protective actions of sex hormones in females, emerging evidence suggests that sex-chromosome genes contribute to the male bias in PD. We previously showed that the Y-chromosome gene, SRY, directly regulates adult brain function in males independent of gonadal hormone influence. SRY protein colocalizes with DA neurons in the male substantia nigra, where it regulates DA biosynthesis and voluntary movement. Here we demonstrate that nigral SRY expression is highly and persistently up-regulated in animal and human cell culture models of PD. Remarkably, lowering nigral SRY expression with antisense oligonucleotides in male rats diminished motor deficits and nigral DA cell loss in 6-hydroxydopamine (6-OHDA)-induced and rotenone-induced rat models of PD. The protective effect of the SRY antisense oligonucleotides was associated with male-specific attenuation of DNA damage, mitochondrial degradation, and neuroinflammation in the toxin-induced rat models of PD. Moreover, reducing nigral SRY expression diminished or removed the male bias in nigrostriatal degeneration, mitochondrial degradation, DNA damage, and neuroinflammation in the 6-OHDA rat model of PD, suggesting that SRY directly contributes to the sex differences in PD. These findings demonstrate that SRY directs a previously unrecognized male-specific mechanism of DA cell death and suggests that suppressing nigral Sry synthesis represents a sex-specific strategy to slow or prevent DA cell loss in PD.


Asunto(s)
Genes Ligados a Y , Neuroprotección/genética , Enfermedad de Parkinson/genética , Animales , Daño del ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/patología , Masculino , Mitofagia/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Oxidopamina , Enfermedad de Parkinson/fisiopatología , Ratas , Proteína de la Región Y Determinante del Sexo/genética , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
8.
Brain Sci ; 8(8)2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104506

RESUMEN

Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...