Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 876: 162750, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36907410

RESUMEN

Knowledge about groundwater origins and their interactions with surface water is fundamental to assess their vulnerability. In this context, hydrochemical and isotopic tracers are useful tools to investigate water origins and mixing. More recent studies examined the relevance of contaminants of emerging concern (CECs) as co-tracers to distinguish sources contributing to groundwater bodies. However, these studies focused on known and targeted CECs a priori selected regarding their origin and/or concentrations. This study aimed to improve these multi-tracer approaches using passive sampling and qualitative suspect screening by exploring a larger variety of historical and emerging concern contaminants in combination with hydrochemistry and water molecule isotopes. With this objective, an in-situ study was conducted in a drinking water catchment area located in an alluvial aquifer recharged by several water sources (both surface and groundwater sources). CECs determined by passive sampling and suspect screening allowed to provide in-depth chemical fingerprints of groundwater bodies by enabling the investigation of >2500 compounds with an increased analytical sensitivity. Obtained cocktails of CECs were discriminating enough to be used as chemical tracer in combination with hydrochemical and isotopic tracers. In addition, the occurrence and type of CECs contributed to a better understanding of groundwater-surface water interactions and highlighted short-time hydrological processes. Furthermore, the use of passive sampling with suspect screening analysis of CECs lead to a more realistic assessment and mapping of groundwater vulnerability.

2.
Sci Total Environ ; 865: 161115, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581297

RESUMEN

Stormwater infiltration systems (SIS) are designed to collect and infiltrate urban stormwater runoff into the ground for flood risk mitigation and artificial aquifer recharge. Many studies have demonstrated that infiltration practices can impact groundwater chemistry and microbiology. However, quantitative assessments of the hydrogeological factors responsible of these changes remain scarce. Thus, the present study aimed to quantitatively test whether changes of groundwater chemistry and microbiology induced by SIS were linked to two factors associated with vadose zone properties (vadose zone thickness, water transit time from surface to groundwater) and one factor associated with groundwater recharge rate (assessed by groundwater table elevation during rain events). To evaluate changes in chemistry (NO3-, PO43- and dissolved organic carbon concentrations), groundwater samples were collected in wells located in SIS-impacted and non-SIS-impacted zones during experimental periods of 10 days. During the same periods, clay beads were incubated in the same wells to measure changes of groundwater microbial biofilms (microbial biomass, dehydrogenase and hydrolytic activities) induced by SIS. Results showed that changes in PO43- supplied to groundwater during stormwater infiltration was negatively correlated with vadose zone thickness. A short water transit time from surface to groundwater increased dissolved organic carbon concentrations in the aquifer which, in turn, increased biofilm biomasses in groundwater. The groundwater recharge rate during rain events (assessed by groundwater table elevation) diluted NO3- concentrations in the aquifer but also influenced the changes of biofilm activities induced by SIS. Groundwater recharge rate during rain events probably increased the fluxes of water and dissolved organic carbon in groundwater, stimulating the activity of microbial biofilms. Overall, the present study is the first to quantify conjointly several factors and processes (water transfer, dilution, solute fluxes) that could explain the impact of stormwater infiltration on chemistry and/or microbiology in groundwater.


Asunto(s)
Materia Orgánica Disuelta , Agua Subterránea , Agua Subterránea/química , Lluvia , Arcilla , Biomasa
3.
G3 (Bethesda) ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35485948

RESUMEN

To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
4.
Environ Pollut ; 266(Pt 2): 115387, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32829126

RESUMEN

The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Lluvia , Suelo
5.
Talanta ; 208: 120307, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816757

RESUMEN

This study describes the development of a novel Empore™ disk-based passive sampler specially adapted to groundwater monitoring. The sampler was calibrated in the laboratory using conditions that corresponded to groundwater (i.e. matrix medium, water temperature, flow rate and water flow across the disks). The retention and elution performance for sixteen semi-polar and polar pollutants on the Empore™ disk (47 mm diameter, SDB-XC) was evaluated. Recoveries were ~80% for the majority of compounds. Sampler uptake kinetics were measured over fourteen days at three concentrations (10, 100 and 500 ng L-1) and the sampling rate (RS) calculated for four compounds. There was no influence of concentration of the test analyte on the uptake profile; with mean RS varying between 0.018 ±â€¯0.007 L day-1 and 0.047 ±â€¯0.001 L day-1. Passive samplers were deployed in twelve characterized groundwater wells near Lyon (France). Atrazine, atrazine-desethyl and diuron were the main pollutants found with a maximum time-weighted concentration of 61 ±â€¯3, 62 ±â€¯24 and 127 ±â€¯49 ng L-1 respectively.

6.
Sci Total Environ ; 672: 253-263, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30959292

RESUMEN

Groundwater systems are being increasingly used to provide potable and other water supplies. Due to human activities, a range of organic pollutants is often detected in groundwater. One source of groundwater contamination is via stormwater infiltration basins, however, there is little information on the types of compounds present in these collection systems and their influence on the underlying groundwater. We developed an analytical strategy based on the use of passive sampling combined with liquid chromatography/high resolution quadrupole-time-of-flight mass spectrometry for screening for the presence of pesticide and pharmaceutical compounds in groundwater and stormwater runoff. Empore™ disk-based passive samplers (SDB-RPS and SDB-XC sorbents) were exposed, using for the first time a new specially designed deployment rig, for 10 days during a rainfall event in five different stormwater infiltration systems around Lyon, France. Stormwater runoff and groundwater (via a well, upstream and downstream of each basin) was sampled. Exposed Empore™ disks were solvent extracted (acetone and methanol) and the extracts analysed using a specific suspect compound screening workflow. High resolution mass spectrometry coupled with a suspect screening approach was found to be a useful tool as it allows a more comprehensive analysis than with targeted screening whilst being less time consuming than non-targeted screening. Using this analytical approach, 101 suspect compounds were tentatively identified, with 40 of this set being subsequently confirmed. The chemicals detected included fungicides, herbicides, insecticides, indicators of human activity, antibiotics, antiepileptics, antihypertensive and non-steroidal anti-inflammatory drugs as well as their metabolites. Polar pesticides were mainly detected in groundwater and pharmaceuticals were more frequently found in runoff. In terms of detection frequency of the pollutants, groundwater impacted by infiltration was found not to be significantly more contaminated than non-impacted groundwater.

7.
Plant Physiol Biochem ; 130: 356-366, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30055344

RESUMEN

Grapevine (Vitis vinifera L.) berry synthesizes and accumulates a large array of phenolic compounds (e.g. flavonoids and hydroxycinnamic acid derivatives), some of which result from acylation mechanisms. In grapevine, the genes encoding enzymes responsible for such acylation are largely unknown. Enzymes classified as serine carboxypeptidases (SCPs), able to transfer acyl moieties from a glucose ester, have previously been characterized in plants, and named serine carboxypeptidase-like acyltransferases (SCL-ATs). We performed genome-wide identification of SCP sequences in V. vinifera. Phylogenetic analysis revealed that only 12 grapevine SCPs, grouped in clade IA with previously characterized SCPL-AT could have an acylation function. Interestingly, seven putative SCP-ATs are grouped in a 400 kb cluster in chromosome 3. The expression level of putative SCPL-ATs has been evaluated at key stages of grape berry development in the main tissues and compared with the content of acylated phenolic compounds in the corresponding samples. The expression levels of VvGAT1 and VvGAT2 and that of VvSCP5 were increased in hairy-roots overexpressing transcription factors inducing the biosynthesis of proanthocyanidins and anthocyanins, respectively. These findings open the way for the functional characterization of the identified putative SCPL-AT from grapevine.


Asunto(s)
Aciltransferasas/metabolismo , Carboxipeptidasas/metabolismo , Vitis/enzimología , Aciltransferasas/genética , Carboxipeptidasas/genética , Clonación Molecular , Frutas/enzimología , Frutas/metabolismo , Genes de Plantas/genética , Fenoles/metabolismo , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Vitis/genética
8.
Anal Bioanal Chem ; 410(15): 3483-3490, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29256073

RESUMEN

A UHPLC-MS/MS method was developed for the quantification of the main compounds involved in oxidation reactions occurring in white musts and wines such as hydroxycinnamic acids, their glutathione and cysteinylglycine adducts (GRP, GRP2, 5-(S-glutathionyl)-trans-caftaric acid, 2-(S-cysteinylglycyl)-trans-caftaric acid, and 2-(S-glutathionyl)-trans-caffeic acid), and reduced and oxidized glutathione (GSH, GSSG) in wine. Since oxidation is the main concern in white wine-making, directly affecting its quality, the developed method was then applied in a series of white wines made with different pre-fermentation treatments to limit oxidation at must stage. The glucose esters and/or glucosides of hydroxycinnamic acids were quantified as glucogallin equivalent. The developed method led to an overall improvement in the limits of detection (LODs) and quantification (LOQs) for all the compounds studied in comparison to other methods such as high-performance liquid chromatography with fluorescence detection (HPLC-FLD) or diode array UV detection (HPLC-DAD). LOD values ranged from 0.0002 to 0.0140 mg/L and LOQs from 0.0005 to 0.0470 mg/L. The recoveries ranged between 80 and 110% in wines, and the relative standard deviation (RSD) for precision intra- and inter-day was below 15%. The accuracy and intra- and inter-day precision met the acceptance criteria of the AOAC international norms. As far as we know, this study is the first report of quantification of GRP, 2-(S-cysteinylglycyl)-trans-caftaric acid, and 2-(S-glutathionyl)-trans-caffeic acid using these non-commercially available compounds as external standards. Those compounds represent a significant proportion of hydroxycinnamic acid derivatives in wines. The methodology described is suitable for the analysis of hydroxycinnamic derivatives in wines.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácidos Cumáricos/análisis , Espectrometría de Masas en Tándem/métodos , Vino/análisis , Dipéptidos/análisis , Glutatión/análisis , Límite de Detección , Oxidación-Reducción , Fenoles/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos
9.
Front Plant Sci ; 8: 1826, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163566

RESUMEN

Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014-2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality.

10.
Molecules ; 21(10)2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27775674

RESUMEN

A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Taninos/análisis , Vitis/química , Catálisis , Ensayos Analíticos de Alto Rendimiento , Metabolómica/métodos , Estructura Molecular , Polimerizacion , Proantocianidinas/aislamiento & purificación , Taninos/química , Taninos/aislamiento & purificación , Vitis/clasificación
11.
J Exp Bot ; 67(11): 3537-50, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27241494

RESUMEN

In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, ß-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Ácido Gálico/metabolismo , Proteínas de Plantas/genética , Vitis/genética , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Organismos Modificados Genéticamente/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Vitis/enzimología , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...