Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mLife ; 1(2): 114-130, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817677

RESUMEN

Marine algae and bacteria produce approximately eight billion tonnes of the organosulfur molecule dimethylsulfoniopropionate (DMSP) in Earth's surface oceans annually. DMSP is an antistress compound and, once released into the environment, a major nutrient, signaling molecule, and source of climate-active gases. The methionine transamination pathway for DMSP synthesis is used by most known DMSP-producing algae and bacteria. The S-directed S-adenosylmethionine (SAM)-dependent 4-methylthio-2-hydroxybutyrate (MTHB) S-methyltransferase, encoded by the dsyB/DSYB gene, is the key enzyme of this pathway, generating S-adenosylhomocysteine (SAH) and 4-dimethylsulfonio-2-hydroxybutyrate (DMSHB). DsyB/DSYB, present in most haptophyte and dinoflagellate algae with the highest known intracellular DMSP concentrations, is shown to be far more abundant and transcribed in marine environments than any other known S-methyltransferase gene in DMSP synthesis pathways. Furthermore, we demonstrate in vitro activity of the bacterial DsyB enzyme from Nisaea denitrificans and provide its crystal structure in complex with SAM and SAH-MTHB, which together provide the first important mechanistic insights into a DMSP synthesis enzyme. Structural and mutational analyses imply that DsyB adopts a proximity and desolvation mechanism for the methyl transfer reaction. Sequence analysis suggests that this mechanism may be common to all bacterial DsyB enzymes and also, importantly, eukaryotic DSYB enzymes from e.g., algae that are the major DMSP producers in Earth's surface oceans.

2.
Nat Microbiol ; 4(11): 1815-1825, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427729

RESUMEN

Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients1,2 that have roles in global sulfur cycling2, atmospheric chemistry3, signalling4,5 and, potentially, climate regulation6,7. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and we identified several previously unknown producers of DMSP. Most DMSP-producing isolates contained dsyB8, but some alphaproteobacteria, gammaproteobacteria and actinobacteria used a methionine methylation pathway independent of DsyB that was previously only associated with higher plants. These bacteria contained a methionine methyltransferase gene (mmtN)-a marker for bacterial synthesis of DMSP through this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all of the tested seawater samples and Tara Oceans bacterioplankton datasets, but were much more abundant in marine surface sediment. Approximately 1 × 108 bacteria g-1 of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth's surface, are environments with high levels of DMSP and DMS productivity, and that bacteria are important producers of DMSP and DMS within these environments.


Asunto(s)
Bacterias/clasificación , Redes Reguladoras de Genes , Sedimentos Geológicos/microbiología , Compuestos de Sulfonio/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Metionina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Agua de Mar/microbiología , Análisis de Secuencia de ARN
3.
Mol Microbiol ; 111(6): 1592-1603, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875449

RESUMEN

Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/enzimología , Aerobiosis , Anaerobiosis , Proteínas Bacterianas/genética , Chaperonas Moleculares/metabolismo , Molibdeno/metabolismo , Nitrato-Reductasa/genética , Oxidación-Reducción , Paracoccus denitrificans/genética
4.
Nat Microbiol ; 4(3): 540-542, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30700867

RESUMEN

In the version of this Letter originally published, the Methods incorrectly stated that all phytoplankton cultures were sampled in mid-exponential phase. The low-nitrogen cultures were sampled in early stationary phase and at the point at which Fv/Fm values decreased, to indicate that cultures were experiencing low-nitrogen conditions. All other phytoplankton cultures were sampled in exponential phase. Growth and Fv/Fm data are provided here on high- and low-nitrogen cultures (Figs 1, 2 and 3) to clarify and support this correction. The Methods also stated that cell counting was done using a Beckman Multisizer 3 Coulter Counter, but a CASY Model TT Cell Counter was used.

5.
Nat Microbiol ; 3(4): 430-439, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483657

RESUMEN

Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1-3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton 4 , and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified 5 . However, eukaryotic phytoplankton probably produce most of Earth's DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution.


Asunto(s)
Cloroplastos/enzimología , Haptophyta/enzimología , Metiltransferasas/genética , Mitocondrias/enzimología , Compuestos de Sulfonio/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Diatomeas/enzimología , Diatomeas/genética , Dinoflagelados/enzimología , Dinoflagelados/genética , Haptophyta/genética , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Fitoplancton/metabolismo
6.
Chem Commun (Camb) ; 52(92): 13511-13514, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27805200

RESUMEN

Here we present a chemical-biology study in the model soil bacterium Paracoccus denitrificans, where we show ligand-specific control of nitrate assimilation. Stabilization of a G-quadruplex in the promoter region of the nas genes, encoding the assimilatory nitrate/nitrite reductase system, is achieved using known quadruplex ligands and results in attenuation of gene transcription.


Asunto(s)
ADN Bacteriano/metabolismo , G-Cuádruplex , Nitratos/metabolismo , Paracoccus denitrificans/metabolismo , ADN Bacteriano/genética , Ligandos , Nitratos/química , Paracoccus denitrificans/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA