Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 123(8): 1801-1808, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37055644

RESUMEN

PURPOSE: To investigate the effect of muscle force during active stretch on quantitative and qualitative indicators of exercise-induced muscle damage (EIMD) in the medial gastrocnemius (MG) muscle. METHODS: Twelve recreationally active volunteers performed two trials of an eccentric heel drop exercise. Participants performed a single bout of low-load (body weight) and high-load (body weight + 30% body weight) exercises on separate legs. The total mechanical work output for each condition was matched between legs. Before, two hours and 48 h after each bout of eccentric exercise, electrically stimulated triceps surae twitch torque, muscle soreness, MG active fascicle length at maximum twitch torque and muscle passive stiffness were collected. Triceps surae electromyographic (EMG) activity, MG fascicle stretch and MG muscle-tendon unit (MTU) length were measured during the eccentric tasks. RESULTS: The high-load condition increased triceps surae muscle activity by 6-9%, but reduced MG fascicle stretch (p < 0.001). MTU stretch was similar between conditions. The greater muscle force during stretch did not give rise to additional torque loss (5 vs 6%) or intensify muscle soreness. CONCLUSIONS: Adding 30% body weight during eccentric contractions has a modest impact on exercise-induced muscle damage in the medial gastrocnemius muscle. These results suggest that muscle load may not be an important determinant of stretch-induced muscle damage in the human MG muscle. The muscle investigated does exhibit large pennation angles and high series elastic compliance; architectural features that likely buffer muscle fibres against stretch and damage.


Asunto(s)
Pierna , Mialgia , Humanos , Mialgia/etiología , Talón , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Electromiografía , Contracción Muscular/fisiología
2.
J Funct Morphol Kinesiol ; 7(4)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36547653

RESUMEN

The anatomical territory where the neuromuscular junctions are grouped corresponds to the innervation zone (IZ). This can be located in-vivo using high-density electromyography and voluntary muscle contractions. However, in patients with motor impairment, the use of contractions imposed by electrical stimulation (ES) could be an alternative. The present study has two aims: Firstly, to describe the location of the IZ in-vivo of the medial gastrocnemius (MG) using imposed contractions by ES. Secondly, to compare the usefulness of M-waves and H-reflexes to localize the IZs. Twenty-four volunteers participated (age: 21.2 ± 1.5 years). ES was elicited in the tibial nerve to obtain M-waves and H-reflexes in the MG. The evaluators used these responses to localize the IZs relative to anatomical landmarks. M-wave and H-reflex IZ frequency identification were compared. The IZs of the MG were mostly located in the cephalocaudal direction, at 39.7% of the leg length and 34% of the knee's condylar width. The IZs were most frequently identified in the M-wave (83.33%, 22/24) compared to the H-reflex (8.33%, 2/24) (p > 0.001). Imposed contractions revealed that the IZ of the MG is located at 39.7% of the leg length. To locate the IZs of the MG muscle, the M-wave is more useful than the H-reflex.

3.
J Appl Physiol (1985) ; 133(5): 1136-1148, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227169

RESUMEN

The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes. EMG and ultrasound images were recorded simultaneously from TA using a 32-electrode silicon matrix while performing isometric dorsiflexion contractions at two ankle joint positions (0° or 30° plantar flexion) and torques (20% or 40% of maximum). EMG signals were decomposed into MUs and changes in fascicle length were assessed with a fascicle-tracking algorithm. MU firings were converted into a cumulative spike train (CST) that was cross-correlated with torque (CST-torque) and fascicle length (CST-length). High cross-correlations were found for CST-length (0.60, range: 0.31-0.85) and CST-torque (0.71, range: 0.31-0.88). Cross-correlation delays revealed that the delay between CST-fascicle length (∼75 ms) was smaller than CST-torque (∼150 ms, P < 0.001). These delays affected MU recruitment and de-recruitment thresholds since the fascicle length at which MUs were recruited and de-recruited was similar but MU recruitment-de-recruitment torque varied. This study demonstrates that changes in TA fascicle length are related to modulations in MU firing and dorsiflexion torque. These relationships allow assessment of the interplay between neural drive, muscle contraction and torque, enabling the time required to convert neural activity into movement to be quantified.NEW & NOTEWORTHY By employing ultrasound-transparent high-density EMG electrodes, we show that modulations in tibialis anterior muscle motor unit discharge rate were related to both changes in fascicle length and resultant torque. These relationships permitted the quantification of the relative delays between fluctuations in neural drive, muscle contraction, and transfer of torque via the tendon during sustained isometric dorsiflexion contractions, providing information on the conversion of neural activity into muscle force during a contraction.


Asunto(s)
Contracción Isométrica , Alta del Paciente , Humanos , Contracción Isométrica/fisiología , Reclutamiento Neurofisiológico/fisiología , Contracción Muscular/fisiología , Torque , Electromiografía , Músculo Esquelético/fisiología
4.
J Sci Med Sport ; 25(8): 684-689, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35637123

RESUMEN

OBJECTIVES: To compare biceps femoris long head (BFlh) muscle tendon unit and fascicle function during Nordic hamstring exercise (NHE) variations with different hip range of motion. DESIGN: Cross-sectional. METHODS: Twelve healthy volunteers (age: 24 ±â€¯4 years; mass: 77 ±â€¯6 kg; height: 177 ±â€¯4 cm) performed two NHE variations: NHE with hips in neutral (fixed) position (conventional NHE); and NHE with hip flexion/extension. BFlh fascicle length behaviour was assessed using a dual transducer ultrasound configuration. BFlh and semitendinosus muscle electromyography, lower limb kinematics and knee flexion moment were also recorded. A biomechanical model was used to estimate BFlh muscle-tendon unit (MTU) length. Statistical Parametric Mapping was used to assess timing differences in outcome variables across the movement. RESULTS: In both variations, during much of the exercise (~30-80% of movement phase), BFlh fascicles undergo little length change (isometric) while the MTU lengthens. Fascicles stretched considerably just in the last ~20% of the exercise, and changes in fascicle length (<2 cm stretch) were smaller in comparison to changes in MTU length (<4 cm stretch). Hip flexion resulted in the muscle tendon unit and fascicles operating at longer lengths until approximately 80% of the movement phase. CONCLUSIONS: The decoupling between fascicle and MTU length seen during the NHE variations suggests that stretch of the elastic tissue of the MTU has an important role in absorbing energy during Nordic hamstring exercises. This may be important when considering adaptations to BFlh muscle and connective tissues that might occur from NHE training.


Asunto(s)
Músculos Isquiosurales , Tendones Isquiotibiales , Adulto , Estudios Transversales , Electromiografía , Ejercicio Físico , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/fisiología , Humanos , Fuerza Muscular , Adulto Joven
5.
J Sport Health Sci ; 11(1): 43-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509714

RESUMEN

BACKGROUND: Eccentric exercise increases muscle fascicle lengths; however, the mechanisms behind this adaptation are still unknown. This study aimed to determine whether biceps femoris long head (BFlh) fascicle length increases in response to 3 weeks of eccentric exercise training are the result of an in-series addition of sarcomeres within the muscle fibers. METHODS: Ten recreationally active participants (age = 27 ± 3 years; mass = 70 ± 14 kg; height = 174 ± 9 cm; mean ± SD) completed 3 weeks of Nordic hamstring exercise (NHE) training on a custom exercise device that was instrumented with load cells. We collected in vivo sarcomere and muscle fascicle images of the BFlh in 2 regions (central and distal) by using microendoscopy and 3 dimension ultrasonography. We then estimated sarcomere length, sarcomere number, and fascicle length before and after the training intervention. RESULTS: Eccentric knee flexion strength increased after the training (15%; p < 0.001; ηp2 = 0.75). Further, we found a significant increase in fascicle length (21%; p < 0.001; ηp2 = 0.81) and sarcomere length (17%; p < 0.001; ηp2 = 0.90) in the distal but not in the central portion of the muscle. The estimated number of sarcomeres in series did not change in either region. CONCLUSION: Fascicle length adaptations appear to be heterogeneous in the BFlh in response to 3 weeks of NHE training. An increase in sarcomere length, rather than the addition of sarcomeres in series, appears to underlie increases in fascicle length in the distal region of the BFlh. The mechanism driving regional increases in fascicle and sarcomere length remains unknown, but we speculate that it may be driven by regional changes in the passive tension of muscle or connective tissue adaptations.


Asunto(s)
Músculos Isquiosurales , Sarcómeros , Adaptación Fisiológica , Adulto , Ejercicio Físico/fisiología , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/fisiología , Humanos , Fuerza Muscular/fisiología , Adulto Joven
6.
Front Bioeng Biotechnol ; 10: 934041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619379

RESUMEN

The instantaneous spatial representation of electrical propagation produced by muscle contraction may introduce bias in surface electromyographical (sEMG) activation maps. Here, we described the effect of instantaneous spatial representation (sEMG segmentation) on embedded fuzzy topological polyhedrons and image features extracted from sEMG activation maps. We analyzed 73,008 topographic sEMG activation maps from seven healthy participants (age 21.4 ± 1.5 years and body mass 74.5 ± 8.5 kg) who performed submaximal isometric plantar flexions with 64 surface electrodes placed over the medial gastrocnemius muscle. Window lengths of 50, 100, 150, 250, 500, and 1,000 ms and overlap of 0, 25, 50, 75, and 90% to change sEMG map generation were tested in a factorial design (grid search). The Shannon entropy and volume of global embedded tri-dimensional geometries (polyhedron projections), and the Shannon entropy, location of the center (LoC), and image moments of maps were analyzed. The polyhedron volume increased when the overlap was <25% and >75%. Entropy decreased when the overlap was <25% and >75% and when the window length was <100 ms and >500 ms. The LoC in the x-axis, entropy, and the histogram moments of maps showed effects for overlap (p < 0.001), while the LoC in the y-axis and entropy showed effects for both overlap and window length (p < 0.001). In conclusion, the instantaneous sEMG maps are first affected by outer parameters of the overlap, followed by the length of the window. Thus, choosing the window length and overlap parameters can introduce bias in sEMG activation maps, resulting in distorted regional muscle activation.

7.
Eur J Appl Physiol ; 121(12): 3349-3360, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34436674

RESUMEN

PURPOSE: Controversy remains about whether exercise-induced muscle damage (EIMD) and the subsequent repeated bout effect (RBE) are caused by the stretching of an activated muscle, or the production of high force at long, but constant, muscle lengths. The aim of this study was to determine the influence of muscle fascicle stretch elicited during different muscle contraction types on the magnitude of EIMD and the RBE. METHODS: Fourteen participants performed an initial bout of lower limb exercise of the triceps surae. One leg performed sustained static contractions at a constant long muscle length (ISO), whereas the contralateral leg performed a bout of eccentric heel drop exercise (ECC). Time under tension was matched between the ECC and ISO conditions. Seven days later, both legs performed ECC. Plantar flexor twitch torque, medial gastrocnemius (MG) fascicle length and muscle soreness were assessed before, 2 h and 2 days after each exercise bout. MG fascicle length and triceps surae surface electromyography were examined across the bouts of exercise. RESULTS: We found that both ECC and ISO conditions elicited EIMD and a RBE. ISO caused less damage 2 h after the initial bout (14% less drop in twitch torque, P = 0.03) and less protection from soreness 2 days after the repeated bout (56% higher soreness, P = 0.01). No differences were found when comparing neuromechanical properties across exercise bouts. CONCLUSION: For MG, the action of stretching an active muscle seems to be more important for causing damage than a sustained contraction at a long length.


Asunto(s)
Traumatismos de la Pierna/etiología , Ejercicios de Estiramiento Muscular , Músculo Esquelético/lesiones , Adulto , Estimulación Eléctrica , Electromiografía , Humanos , Masculino , Contracción Muscular , Mialgia/etiología , Torque
8.
Scand J Med Sci Sports ; 31(4): 799-812, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33378553

RESUMEN

The repeated bout effect (RBE) confers protection following exercise-induced muscle damage. Typical signs of this protective effect are significantly less muscle soreness and faster recovery of strength after the second bout. The aim of this study was to compare regional changes in medial gastrocnemius (MG) muscle activity and mechanical hyperalgesia after repeated bouts of eccentric exercise. Twelve healthy male participants performed two bouts of eccentric heel drop exercise (separated by 7 days) while wearing a vest equivalent to 20% of their body weight. High-density MG electromyographic amplitude maps and topographical pressure pain sensitivity maps were created before, two hours (2H), and two days (2D) after both exercise bouts. Statistical parametric mapping was used to identify RBE effects on muscle activity and mechanical hyperalgesia, using pixel-level statistics when comparing maps. The results revealed a RBE, as a lower strength loss (17% less; P < .01) and less soreness (50% less; P < .01) were found after the second bout. However, different muscle regions were activated 2H and 2D after the initial bout but not following the repeated bout. Further, no overall changes in EMG distribution or mechanical hyperalgesia were found between bouts. These results indicate that muscle activation is unevenly distributed during the initial bout, possibly to maintain muscle function during localized mechanical fatigue. However, this does not reflect a strategy to confer protection during the repeated bout by activating undamaged/non-fatigued muscle areas.


Asunto(s)
Ejercicio Físico/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Mialgia/fisiopatología , Adaptación Fisiológica , Adulto , Electromiografía , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
9.
Clin Biomech (Bristol, Avon) ; 62: 7-14, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30639965

RESUMEN

BACKGROUND: The most common surgical approaches in use for total hip arthroplasty are the lateral and posterior. When comparing these approaches in terms of gait biomechanics, studies usually rely on pre-defined discrete variables related to the events of gait cycle. However, this analysis may miss differences in other parts of the movement pattern that are not explored. We applied Statistical Parametric Mapping to compare hip kinematics between patients who underwent arthroplasty using either a lateral or posterior approach, contrasting these results with discrete variable analysis. METHODS: Twenty-two participants (11 lateral, 11 posterior; age between 50 and 80 years) underwent gait analysis before, 3 weeks and 12 weeks after hip arthroplasty. One-dimensional (e.g. time-varying) trajectories and zero-dimensional (e.g. peak extension) discrete variables were used to assess differences between groups in each plane of hip movement (sagittal, frontal, and transverse). FINDINGS: One-dimensional and zero-dimensional analyses found no significant differences between groups. Statistical Parametric Mapping revealed that both groups presented significant changes over time in hip adduction at 11-43% of the gait cycle. Zero-dimensional analysis seems to overstate sagittal plane changes over time since no such changes were found by Statistical Parametric Mapping. INTERPRETATION: Our results agreed with previous studies suggesting that surgical approach do not affect hip kinematics at the early post-operative stage after arthroplasty. However, Statistical Parametric Mapping revealed changes in frontal plane kinematics over time that were underestimated by the zero-dimensional variables. These findings suggest hip adduction impairment up to 12 weeks after arthroplasty.


Asunto(s)
Artroplastia de Reemplazo de Cadera/métodos , Marcha/fisiología , Osteoartritis de la Cadera/cirugía , Anciano , Anciano de 80 o más Años , Femenino , Articulación de la Cadera/fisiología , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Cadera/fisiopatología , Rango del Movimiento Articular/fisiología , Caminata/fisiología
10.
PLoS One ; 13(11): e0205658, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30439952

RESUMEN

The sensorimotor system helps to maintain functional joint stability during movement. After anterior cruciate ligament (ACL) injury and reconstruction, several sensorimotor deficits may arise, including altered proprioception and changes in neuromuscular control. It is still unknown whether the type of autograft used in the reconstruction may influence knee sensorimotor impairments. The aim of this study was to comparatively assess the effects of the hamstring tendon (HT) and bone-patellar tendon-bone (BPTB) ACL reconstruction techniques on knee sensorimotor control 6-12 months post-operation. A total of 83 male subjects participated in this study: 27 healthy participants, 30 BPTB-operated patients and 26 HT-operated patients. Active joint position sense in 3 ranges of motion (90-60°, 60-30°, and 30-0° of knee flexion), isometric steadiness, and onset of muscle activation were used to compare sensorimotor system function between groups. Both operated groups had a small (< 5°) but significant joint position sense error in the 30-0° range when compared to the healthy group. No significant differences were found between the operated and the control groups for isometric steadiness or onset of muscle activation. The results of this study suggest that operated patients present knee proprioceptive deficits independently of surgical technique. Nevertheless, the clinical implications of this impairment are still unknown. It seems that selected surgical approach for ACL reconstruction do not affect functioning of the sensorimotor system to a large degree.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/cirugía , Ligamento Cruzado Anterior/cirugía , Procedimientos de Cirugía Plástica , Tendones/cirugía , Adulto , Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Reconstrucción del Ligamento Cruzado Anterior , Femenino , Humanos , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular/fisiología , Corteza Sensoriomotora/fisiopatología , Tendones/fisiopatología , Adulto Joven
11.
PeerJ ; 6: e5310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083454

RESUMEN

BACKGROUND: The aim of this study was to compare muscle activation onset times of knee muscles between the involved and uninvolved knee of patients with unilateral anterior cruciate ligament reconstruction (ACLR), and the uninjured knees of healthy subjects after a controlled perturbation at the ankle level. METHODS: Fifty male amateur soccer players, 25 with unilateral ACLR using semitendinosus-gracilis graft (age = 28.36 ± 7.87 years; time after surgery = 9 ± 3 months) and 25 uninjured control subjects (age = 24.16 ± 2.67 years) participated in the study. Two destabilizing platforms (one for each limb) generated a controlled perturbation at the ankle of each participant (30°of inversion, 10°plantarflexion simultaneously) in a weight bearing condition. The muscle activation onset times of semitendinosus (ST) and vastus medialis (VM) was detected through an electromyographic (EMG) analysis to assess the neuromuscular function of knee muscles. RESULTS: Subjects with ACLR had significant delays in EMG onset in the involved (VM = 99.9 ± 30 ms; ST = 101.7 ± 28 ms) and uninvolved knee (VM = 100.4 ± 26 ms; ST = 104.7 ± 28 ms) when compared with the healthy subjects (VM = 69.1 ± 9 ms; ST = 74.6 ± 9 ms). However, no difference was found between involved and uninvolved knee of the ACLR group. DISCUSSION: The results show a bilateral alteration of knee muscles in EMG onset after a unilateral ACLR, responses that can be elicited with an ankle perturbation. This suggests an alteration in the central processing of proprioceptive information and/or central nervous system re-organization that may affect neuromuscular control of knee muscles in the involved and uninvolved lower limbs.

12.
J Aging Phys Act ; 25(2): 295-304, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27786590

RESUMEN

This study examined the contributions of individual muscles to changes in energetic cost of transport (COT) over seven walking speeds, and compared results between healthy young and elderly subjects. Twenty six participants (13 young aged 18-30; 13 old aged 70-80) were recruited. COT (O2/kg body mass/km) was calculated by standardizing the mean oxygen consumption recorded during steady state walking. Electromyography signals from 10 leg muscles were used to calculate the cumulative activity required to traverse a unit of distance (CMAPD) for each muscle at each speed. In the old group CMAPD was correlated with COT, presented higher and more variable values, and showed greater increases around optimal speed for all studied muscles. Soleus CMAPD was independent of speed in the young group, but this was not evident with aging. Greater energy cost of walking in older individuals seems to be attributable to increased energy cost of all lower limb muscles.


Asunto(s)
Metabolismo Energético/fisiología , Pierna/fisiología , Músculo Esquelético/fisiología , Caminata/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Electromiografía , Humanos , Músculo Esquelético/metabolismo , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...