Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414203

RESUMEN

Mitochondria are dynamic, intracellular organelles with a separate genome originating from prokaryotes. They perform numerous functions essential for cellular metabolism and energy production. Mitochondrial-derived vesicles (MDVs) are single or double membrane-enclosed vesicles, formed and released from the mitochondrial sub-compartments into the cytosol, in response to various triggers. MDVs interact with other organelles such as lysosomes and peroxisomes or may be incorporated and excreted via extracellular vesicles (EVs). MDVs selectively incorporate diverse protein and lipid cargoes and are involved in various functions such as mitochondrial quality control, immunomodulation, energy complementation, and compartmentalization and transport. This review aims to provide a summary of the current knowledge of MDVs biogenesis, release, cargoes, and roles.

2.
Cells ; 12(11)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37296670

RESUMEN

Dual localization or dual targeting refers to the phenomenon by which identical, or almost identical, proteins are localized to two (or more) separate compartments of the cell. From previous work in the field, we had estimated that a third of the mitochondrial proteome is dual-targeted to extra-mitochondrial locations and suggested that this abundant dual targeting presents an evolutionary advantage. Here, we set out to study how many additional proteins whose main activity is outside mitochondria are also localized, albeit at low levels, to mitochondria (eclipsed). To do this, we employed two complementary approaches utilizing the α-complementation assay in yeast to uncover the extent of such an eclipsed distribution: one systematic and unbiased and the other based on mitochondrial targeting signal (MTS) predictions. Using these approaches, we suggest 280 new eclipsed distributed protein candidates. Interestingly, these proteins are enriched for distinctive properties compared to their exclusively mitochondrial-targeted counterparts. We focus on one unexpected eclipsed protein family of the Triose-phosphate DeHydrogenases (TDH) and prove that, indeed, their eclipsed distribution in mitochondria is important for mitochondrial activity. Our work provides a paradigm of deliberate eclipsed mitochondrial localization, targeting and function, and should expand our understanding of mitochondrial function in health and disease.


Asunto(s)
Proteínas Mitocondriales , Saccharomyces cerevisiae , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Proteoma/metabolismo
3.
EMBO Rep ; 24(5): e56114, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929726

RESUMEN

Vesicular transport is a means of communication. While cells can communicate with each other via secretion of extracellular vesicles, less is known regarding organelle-to organelle communication, particularly in the case of mitochondria. Mitochondria are responsible for the production of energy and for essential metabolic pathways in the cell, as well as fundamental processes such as apoptosis and aging. Here, we show that functional mitochondria isolated from Saccharomyces cerevisiae release vesicles, independent of the fission machinery. We isolate these mitochondrial-derived vesicles (MDVs) and find that they are relatively uniform in size, of about 100 nm, and carry selective protein cargo enriched for ATP synthase subunits. Remarkably, we further find that these MDVs harbor a functional ATP synthase complex. We demonstrate that these vesicles have a membrane potential, produce ATP, and seem to fuse with naive mitochondria. Our findings reveal a possible delivery mechanism of ATP-producing vesicles, which can potentially regenerate ATP-deficient mitochondria and may participate in organelle-to-organelle communication.


Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Potenciales de la Membrana , Mitocondrias/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
4.
Cells ; 11(24)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552873

RESUMEN

Ubiquitination is a critical type of post-translational modification in eukaryotic cells. It is involved in regulating nearly all cellular processes in the cytosol and nucleus. Mitochondria, known as the metabolism heart of the cell, are organelles that evolved from bacteria. Using the subcellular compartment-dependent α-complementation, we detect multiple components of ubiquitination machinery as being eclipsed distributed to yeast mitochondria. Ubiquitin conjugates and mono-ubiquitin can be detected in lysates of isolated mitochondria from cells expressing HA-Ub and treated with trypsin. By expressing MTS (mitochondrial targeting sequence) targeted HA-tagged ubiquitin, we demonstrate that certain ubiquitination events specifically occur in yeast mitochondria and are independent of proteasome activity. Importantly, we show that the E2 Rad6 affects the pattern of protein ubiquitination in mitochondria and provides an in vivo assay for its activity in the matrix of the organelle. This study shows that ubiquitination occurs in the mitochondrial matrix by eclipsed targeted components of the ubiquitin machinery, providing a new perspective on mitochondrial and ubiquitination research.


Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Mitocondrias/metabolismo , Ubiquitina/metabolismo , Orgánulos/metabolismo
5.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36428601

RESUMEN

Fumarate hydratase (FH) is an evolutionary conserved TCA cycle enzyme that reversibly catalyzes the hydration of fumarate to L-malate and has a moonlight function in the DNA damage response (DDR). Interestingly, FH has a contradictory cellular function, as it is pro-survival through its role in the TCA cycle, yet its loss can drive tumorigenesis. Here, we found that in both non-cancerous (HEK-293T) and cancerous cell lines (HepG2), the cell response to FH loss is separated into two distinct time frames based on cell proliferation and DNA damage repair. During the early stages of FH loss, cell proliferation rate and DNA damage repair are inhibited. However, over time the cells overcome the FH loss and form knockout clones, indistinguishable from WT cells with respect to their proliferation rate. Due to the FH loss effect on DNA damage repair, we assumed that the recovered cells bear adaptive mutations. Therefore, we applied whole-exome sequencing to identify such mutated genes systematically. Indeed, we identified recurring mutations in genes belonging to central oncogenic signaling pathways, such as JAK/STAT3, which we validated in impaired FH-KO clones. Intriguingly, we demonstrate that these adaptive mutations are responsible for FH-KO cell proliferation under TCA cycle malfunction.

6.
Biomolecules ; 13(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36671462

RESUMEN

Previous studies demonstrated that dysfunctional yeast proteasomes accumulate in the insoluble protein deposit (IPOD), described as the final deposition site for amyloidogenic insoluble proteins and that this compartment also mediates proteasome ubiquitination, a prerequisite for their targeted autophagy (proteaphagy). Here, we examined the solubility state of proteasomes subjected to autophagy as a result of their inactivation, or under nutrient starvation. In both cases, only soluble proteasomes could serve as a substrate to autophagy, suggesting a modified model whereby substrates for proteaphagy are dysfunctional proteasomes in their near-native soluble state, and not as previously believed, those sequestered at the IPOD. Furthermore, the insoluble fraction accumulating in the IPOD represents an alternative pathway, enabling the removal of inactive proteasomes that escaped proteaphagy when the system became saturated. Altogether, we suggest that the relocalization of proteasomes to soluble aggregates represents a general stage of proteasome recycling through autophagy.


Asunto(s)
Autofagia , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia/fisiología , Citoplasma/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinación
7.
iScience ; 24(11): 103354, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805801

RESUMEN

The Krebs cycle enzyme fumarase, which has been identified as a tumor suppressor, is involved in the deoxyribonucleic acid (DNA) damage response (DDR) in human, yeast, and bacterial cells. We have found that the overexpression of the cysteine desulfurase Nfs1p restores DNA repair in fumarase-deficient yeast cells. Nfs1p accumulates inactivating post-translational modifications in yeast cells lacking fumarase under conditions of DNA damage. Our model is that in addition to metabolic signaling of the DDR in the nucleus, fumarase affects the DDR by protecting the desulfurase Nfs1p in mitochondria from modification and inactivation. Fumarase performs this protection by directly binding to Nfs1p in mitochondria and enabling, the maintenance, via metabolism, of a non-oxidizing environment in mitochondria. Nfs1p is required for the formation of Fe-S clusters, which are essential cofactors for DNA repair enzymes. Thus, we propose that the overexpression of Nfs1p overcomes the lack of fumarase by enhancing the activity of DNA repair enzymes.

8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34083440

RESUMEN

Class-II fumarases (fumarate hydratase, FH) are dual-targeted enzymes occurring in the mitochondria and cytosol of all eukaryotes. They are essential components in the DNA damage response (DDR) and, more specifically, protect cells from DNA double-strand breaks. Similarly, the gram-positive bacterium Bacillus subtilis class-II fumarase, in addition to its role in the tricarboxylic acid cycle, participates in the DDR. Escherichia coli harbors three fumarase genes: class-I fumA and fumB and class-II fumC Notably, class-I fumarases show no sequence similarity to class-II fumarases and are of different evolutionary origin. Strikingly, here we show that E. coli fumarase functions are distributed between class-I fumarases, which participate in the DDR, and the class-II fumarase, which participates in respiration. In E. coli, we discover that the signaling molecule, alpha-ketoglutarate (α-KG), has a function, complementing DNA damage sensitivity of fum-null mutants. Excitingly, we identify the E. coli α-KG-dependent DNA repair enzyme AlkB as the target of this interplay of metabolite signaling. In addition to α-KG, fumarate (fumaric acid) is shown to affect DNA damage repair on two different levels, first by directly inhibiting the DNA damage repair enzyme AlkB demethylase activity, both in vitro and in vivo (countering α-KG). The second is a more global effect on transcription, because fum-null mutants exhibit a decrease in transcription of key DNA damage repair genes. Together, these results show evolutionary adaptable metabolic signaling of the DDR, in which fumarases and different metabolites are recruited regardless of the evolutionary enzyme class performing the function.


Asunto(s)
Daño del ADN , Escherichia coli/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Enzimas AlkB , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico , Roturas del ADN de Doble Cadena , ADN Bacteriano/genética , Fumarato Hidratasa/química , Genes Bacterianos
9.
J Mol Biol ; 432(23): 6108-6126, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33058874

RESUMEN

The Krebs cycle enzyme fumarase is a dual-targeted protein that is located in the mitochondria and cytoplasm of eukaryotic cells. Besides being involved in the TCA cycle and primary metabolism, fumarase is a tumour suppressor that aids DNA repair in human cells. Using mass spectrometry, we identified modifications in peptides of cytosolic yeast fumarase, some of which were absent when the cells were exposed to DNA damage (using the homing endonuclease system or hydroxyurea). We show that DNA damage increased the enzymatic activity of fumarase, which we hypothesized to be affected by post-translational modifications. Succinylation and ubiquitination of fumarase at lysines 78 and 79, phosphorylation at threonine 122, serine 124 and threonine 126 as well as deamidation at arginine 239 were found to be functionally relevant. Upon homology analysis, these residues were also found to be evolutionally conserved. Serine 128, on the other hand, is not evolutionary conserved and the Fum1S128D phosphorylation mimic was able to aid DNA repair. Our molecular model is that the above modifications inhibit the enzymatic activity of cytosolic fumarase under conditions of no DNA damage induction and when there is less need for the enzyme. Upon genotoxic stress, some fumarase modifications are removed and some enzymes are degraded while unmodified proteins are synthesized. This report is the first to demonstrate how post-translational modifications influence the catalytic and DNA repair functions of fumarase in the cell.


Asunto(s)
Daño del ADN/genética , Fumarato Hidratasa/genética , Procesamiento Proteico-Postraduccional/genética , Respiración/genética , Citoplasma/enzimología , Citoplasma/genética , Reparación del ADN/genética , Fumarato Hidratasa/química , Humanos , Mitocondrias/enzimología , Mitocondrias/genética , Fosforilación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Ubiquitinación/genética
10.
Sci Rep ; 10(1): 16736, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028849

RESUMEN

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated optic atrophy. A complementation assay using aco1-deficient yeast revealed a growth defect for the mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient-derived fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while ACO2 enzyme activity was not affected compared to two age- and gender-matched control lines. Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial membrane potential or mitochondrial superoxide production, were not changed under baseline conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced mtDNA transcription levels in ACO2-mutant fibroblasts. Inducing oxidative stress led to an increased susceptibility for cell death in ACO2-mutant fibroblasts compared to controls. Our study reveals that a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy.


Asunto(s)
Aconitato Hidratasa/genética , Fibroblastos/metabolismo , Haploinsuficiencia , Mitocondrias/genética , Atrofia Óptica/genética , Nervio Óptico/patología , Eliminación de Secuencia , Aconitato Hidratasa/metabolismo , ADN Mitocondrial , Exoma , Femenino , Fibroblastos/patología , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Atrofia Óptica/metabolismo , Atrofia Óptica/patología , Nervio Óptico/metabolismo
11.
J Mol Med (Berl) ; 97(11): 1557-1566, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31529142

RESUMEN

The VARS2 gene encodes a mitochondrial valyl-transfer RNA synthetase which is used in mitochondrial translation. To date, several patients with VARS2 pathogenic variants have been described in the literature. These patients have features of lactic acidosis with encephalomyopathy. We present a case of an infant with lactic acidosis, failure to thrive, and severe primary pulmonary hypertension who was found to be a compound heterozygote for two novel VARS2 variants (c.1940C>T, p.(Thr647Met) and c.2318G>A, p.(Arg773Gln)). The patient was treated with vitamin supplements and a carbohydrate-restricted diet. The lactic acidosis and failure to thrive resolved, and he showed good growth and development. Functional studies and molecular analysis employed a yeast model system and the VAS1 gene (yeast homolog of VARS2). VAS1 genes harboring either one of two mutations corresponding to the two novel variants in the VARS2 gene, exhibited partially reduced function in haploid yeast strains. A combination of both VAS1 variant alleles in a diploid yeast cell exhibited a more significant decrease in oxidative metabolism-dependent growth and in the oxygen consumption rate (reminiscent of the patient who carries two mutant VARS2 alleles). Our results demonstrate the pathogenicity of the biallellic novel VARS2 variants. KEY MESSAGES: • A case of an infant who is a compound heterozygote for two novel VARS2 variants. • This infant displayed lactic acidosis, failure to thrive, and pulmonary hypertension. • Treatment of the patient with a carbohydrate-restricted diet resulted in good growth and development. • Studies with the homologous yeast VAS1 gene showed reduced function of corresponding single mutant in haploid yeast strains. • A combination of both VAS1 variant alleles in diploid yeast exhibited a more significant decrease in function, thereby confirming the pathogenicity of the biallellic novel VARS2 variants.


Asunto(s)
Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/metabolismo , Antígenos HLA/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Valina-ARNt Ligasa/genética , Alelos , Secuencia de Aminoácidos , Heterocigoto , Humanos , Lactante , Masculino , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN
12.
Nat Methods ; 16(2): 205, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30602782

RESUMEN

The version of Supplementary Table 1 originally published online with this article contained incorrect localization annotations for one plate. This error has been corrected in the online Supplementary Information.

13.
Front Mol Biosci ; 5: 68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090811

RESUMEN

Fumarase is an enzyme of the tricarboxylic acid (TCA) cycle in mitochondria, but in recent years, it has emerged as a participant in the response to DNA double strand breaks (DSBs) in the nucleus. In fact, this enzyme is dual-targeted and can be also readily detected in the mitochondrial and cytosolic/nuclear compartments of all the eukaryotic organisms examined. Intriguingly, this evolutionary conserved cytosolic population of fumarase, its enzymatic activity and the associated metabolite fumarate, are required for the cellular DNA damage response (DDR) to double-strand breaks. Here we review findings from yeast and human cells regarding how fumarase and fumarate may precisely participate in the DNA damage response. In yeast, cytosolic fumarase is involved in the homologous recombination (HR) repair pathway, through its function in the DSB resection process. One target of this regulation is the resection enzyme Sae2. In human cells, fumarase is involved in the non-homologous end joining (NHEJ) repair pathway. Fumarase is phosphorylated by the DNA-dependent protein kinase (DNA-PK) complex, which induces the recruitment of fumarase to the DSB and local generation of fumarate. Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the dimethylation of histone H3, which leads to the repair of the break by the NHEJ pathway. Finally, we discuss the question how fumarase may function as a tumor suppressor via its metabolite substrate fumarate. We offer a number of models which can explain an apparent contradiction regarding how fumarate absence/accumulation, as a function of subcellular location and stage can determine tumorigenesis. Fumarate, on the one hand, a positive regulator of genome stability (its absence supports genome instability and tumorigenesis) and, on the other hand, its accumulation drives angiogenesis and proliferation (thereby supporting tumor establishment).

14.
Nat Methods ; 15(8): 617-622, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988094

RESUMEN

Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.


Asunto(s)
Genoma Fúngico , Biblioteca Genómica , Proteoma/genética , Saccharomyces cerevisiae/genética , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Lugares Marcados de Secuencia
15.
Sci Rep ; 8(1): 5903, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651044

RESUMEN

Molecules of single proteins, echoforms, can be distributed between two (or more) subcellular locations, a phenomenon which we refer to as dual targeting or dual localization. The yeast aconitase gene ACO1 (778 amino acids), encodes a single translation product that is nonetheless dual localized to the cytosol and mitochondria by a reverse translocation mechanism. The solved crystal structure of aconitase isolated from porcine heart mitochondria shows that it has four domains. The first three tightly associated N-terminal domains are tethered to the larger C-terminal fourth domain (C-terminal amino acids 517-778). We have previously shown that the aconitase C terminal domain constitutes an independent dual targeting signal when fused to mitochondria-targeted passenger-proteins. We show that the aconitase N and C-terminal domains interact and that this interaction is important for efficient aconitase post translational import into mitochondria and for aconitase dual targeting (relative levels of aconitase echoforms). Our results suggest a "chaperone-like function" of the C terminal domain towards the N terminal domains which can be modulated by Ssa1/2 (cytosolic Hsp70).


Asunto(s)
Adenosina Trifosfatasas/química , Citosol/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteína 1 Reguladora de Hierro/química , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Curr Genet ; 64(3): 697-712, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29204698

RESUMEN

One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are the main DSB repair pathways. Fumarase is a mitochondrial enzyme which functions in the tricarboxylic acid cycle. Intriguingly, the enzyme can be readily detected in the cytosolic compartment of all organisms examined, and we have shown that cytosolic fumarase participates in the DNA damage response towards DSBs. In human cells, fumarase was shown to be involved in NHEJ, but it is still unclear whether fumarase is also important for the HR pathway. Here we show that the depletion of cytosolic fumarase in yeast prolongs the presence of Mre11 at the DSBs, and decreases the kinetics of repair by the HR pathway. Overexpression of Sae2 endonuclease reduced the DSB sensitivity of the cytosolic fumarase depleted yeast, suggesting that Sae2 and fumarase functionally interact. Our results also suggest that Sae2 and cytosolic fumarase physically interact in vivo. Sae2 has been shown to be important for the DSB resection process, which is essential for the repair of DSBs by the HR pathway. Depletion of cytosolic fumarase inhibited DSB resection, while the overexpression of cytosolic fumarase or Sae2 restored resection. Together with our finding that cytosolic fumarase depletion reduces Sae2 cellular amounts, our results suggest that cytosolic fumarase is important for the DSB resection process by regulating Sae2 levels.


Asunto(s)
Citosol/enzimología , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , ADN/metabolismo , Endonucleasas/metabolismo , Fumarato Hidratasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparación del ADN por Unión de Extremidades , Unión Proteica , Saccharomyces cerevisiae/enzimología
17.
Elife ; 62017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140245

RESUMEN

Fumarase is distributed between two compartments of the eukaryotic cell. The enzyme catalyses the reversible conversion of fumaric to L-malic acid in mitochondria as part of the tricarboxylic acid (TCA) cycle, and in the cytosol/nucleus as part of the DNA damage response (DDR). Here, we show that fumarase of the model prokaryote Bacillus subtilis (Fum-bc) is induced upon DNA damage, co-localized with the bacterial DNA and is required for the DDR. Fum-bc can substitute for both eukaryotic functions in yeast. Furthermore, we found that the fumarase-dependent intracellular signaling of the B. subtilis DDR is achieved via production of L-malic acid, which affects the translation of RecN, the first protein recruited to DNA damage sites. This study provides a different evolutionary scenario in which the dual function of the ancient prokaryotic fumarase, led to its subsequent distribution into different cellular compartments in eukaryotes.


Asunto(s)
Bacillus subtilis/enzimología , Daño del ADN , ADN Bacteriano/metabolismo , Fumarato Hidratasa/metabolismo , Malatos/metabolismo , Proteínas Bacterianas/metabolismo , Enzimas de Restricción del ADN/metabolismo , Prueba de Complementación Genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Methods Mol Biol ; 1567: 179-195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276019

RESUMEN

Eukaryotic cells are defined by the existence of subcellular compartments and organelles. The localization of a protein to a specific subcellular compartment is one of the most fundamental processes of a living cell. It is well documented that in eukaryotic cells molecules of a single protein can be located in more than one subcellular compartment, a phenomenon termed dual targeting, bimodal targeting, or dual localization. Recently, growing evidence started to accumulate for abundant dual targeting of mitochondrial proteins, which are localized to a second location in the cell, besides this specific organelle. We have termed these dual localized proteins echoforms or echoproteins (echo in Greek denotes repetition). As the research on dual targeting of proteins is developing and evidence is accumulating for high abundance of the phenomenon, there is a growing need for new methods that would allow the identification of dual localized proteins and analysis of their functions in each subcellular compartment. This is particularly critical for single translation products that are encoded by the same gene and are actually derived from the same protein but nevertheless distribute between different subcellular compartments. The above considerations have led us to develop several approaches for studying dual localized proteins and their dual function. These include an α-complementation-based assay, specific depletion, and selection of the individual echoproteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Levaduras/metabolismo , Expresión Génica , Prueba de Complementación Genética , Espacio Intracelular , Proteínas Mitocondriales/genética , Fenotipo , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Transporte de Proteínas , Eliminación de Secuencia , Levaduras/genética
20.
Neurogenetics ; 18(1): 57-61, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28058510

RESUMEN

Mitochondrial encephalopathies are a heterogeneous group of disorders which generally carries a grave prognosis. Using exome sequencing, we identified a homozygous mutation, Pro-304-His in the IDH3A gene, in a patient suffering from infantile encephalopathy with peripheral and autonomic nervous system involvement. Mammalian isocitrate dehydrogenase (IDH) 3 is a heterotetramer of 2alfa, 1beta, and 1gamma subunits, and IDH3A encodes the alfa subunit of the mitochondrial NAD+-dependent IDH. Here we show that in contrast to wild-type human IDH3A, the human IDH3A which harbor the p.Pro304His mutation does not complement the yeast Δidh1/Δidh2 growth defect on ethanol-acetate. We therefore propose that homozygosity for the p.Pro304His mutation is deleterious for mitochondrial NAD+-specific IDH3A activity in human. IDH3A now joins the list of TCA cycle-related proteins, which includes ACO2, DLD, SLC25A19, FH, and succinate dehydrogenase subunits, all associated with neurological disorders.


Asunto(s)
Encefalopatías/genética , Isocitrato Deshidrogenasa/genética , Mutación Missense , Factores de Edad , Sustitución de Aminoácidos , Histidina/genética , Homocigoto , Humanos , Recién Nacido , Enfermedades del Recién Nacido/genética , Isocitrato Deshidrogenasa/química , Masculino , Enfermedades Mitocondriales/genética , Prolina/genética , Subunidades de Proteína/genética , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...