Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 947755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091059

RESUMEN

The intestine is the largest digestive and immune organ in the human body, with an intact intestinal mucosal barrier. Bifidobacterium longum is the specific gut commensals colonized in the human gut for boosting intestinal immunity to defend against intestinal mucosal immune injury. In the LPS-induced intestinal injury model, the Bifidobacterium longum BL-10 was suggested to boost the intestinal immune. Detailly, compared with the LPS-induced mice, the BL10 group significantly reduced intestine (jejunum, ileum, and colon) tissue injury, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-17, IL-22, and IL-12) levels and myeloperoxidase activities. Moreover, the B. longum BL-10 significantly increased the number of immunocytes (CD4+ T cells, IgA plasma cells) and the expression of tight junction protein (Claudin1 and Occludin). B. longum BL-10 regulated the body's immune function by regulating the Th1/Th2 and Th17/Treg balance, which showed a greater impact on the Th1/Th2 balance. Moreover, the results also showed that B. longum BL-10 significantly down-regulated the intestinal protein expression of TLR4, p-IκB, and NF-κB p65. The B. longum BL-10 increased the relative abundance of the genera, including Lachnospiraceae_NK4A136_group and Clostridia_UCG-014, which were related to declining the levels of intestinal injury. Overall, these results indicated that the B. longum BL-10 had great functionality in reducing LPS-induced intestinal mucosal immune injury.


Asunto(s)
Bifidobacterium longum , Animales , Humanos , Inmunidad , Inmunomodulación , Mucosa Intestinal , Lipopolisacáridos/farmacología , Ratones
2.
J Agric Food Chem ; 70(28): 8680-8692, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35797025

RESUMEN

Bifidobacterium longum is frequently utilized and has broad prospects for preventing liver injury. The current research assessed the antioxidant capacity of B. longum BL-10 and probed its mechanism for ameliorating lipopolysaccharide (LPS)-induced acute liver injury (ALI). B. longum BL-10-encoded 15 antioxidant genes showed strong reducing power activity and scavenging activity of DPPH, hydroxyl radicals, and superoxide anions. The intragastric administration of B. longum BL-10 resulting in a marked reduction in liver function indicators (alanine aminotransferase, aspartate aminotransferase, total bilirubin, and total bile acid) and proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) was indicative of ALI recovery. Following 16s RNA analysis, B. longum BL-10 significantly altered the richness of genera, as for the Escherichia-Shigella, Lachnospiraceae_NK4A136_group, and Clostridia_UCG-014, dramatically contributing to the formation of acetic acid and butyric acid. Meanwhile, their metabolites regulated the TLR4/NF-κB signaling pathways to alleviate hepatic injury symptoms. Overall, all the results demonstrated that B. longum BL-10 had excellent efficiency in preventing LPS-induced ALI.


Asunto(s)
Antioxidantes , Bifidobacterium longum , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Lipopolisacáridos/efectos adversos , Hígado/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo
3.
Food Funct ; 13(9): 4914-4929, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35395665

RESUMEN

The intestine is the largest digestive and immune organ in the human body, with an intact intestinal mucosal barrier. Lactobacillus plantarum is an important strain of probiotics in the intestine for boosting intestinal immunity to defend against intestinal injury. In the lipopolysaccharide-induced intestinal injury model, mixed L. plantarum (L. plantarum KLDS 1.0318, L. plantarum KLDS 1.0344, and L. plantarum KLDS 1.0386) was suggested to boost intestinal immunity. In detail, compared with LPS-induced mice, mice in the mixed L. plantarum group showed significantly reduced intestine (jejunum, ileum, and colon) tissue injury, pro-inflammatory cytokine (TNF-α, IL-6 and IL-12) levels, myeloperoxidase activities, and serum D-lactate (P < 0.05) content. Moreover, the mixed L. plantarum significantly increased the number of immunocytes (CD4+ T cells, IgA plasma cells) and the expression of tight junction proteins (Claudin1 and Occludin). The results also showed that the mixed L. plantarum significantly down-regulated (P < 0.05) the intestinal protein expression of TLR4, p-IκB, and NF-κB p65. The mixed L. plantarum group increased the relative abundance of the genera, including Lactobacillus, Lachnoclostridium, and Desulfovibrio, which are related to improving the levels of SCFAs (acetic acid, butyric acid) and total bile acid (P < 0.05). Overall, these results indicated that the mixed L. plantarum had great functionality in reducing LPS-induced intestinal injury.


Asunto(s)
Enfermedades Intestinales , Lactobacillus plantarum , Probióticos , Animales , Enfermedades Intestinales/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/metabolismo , Ratones
4.
J Dairy Sci ; 105(2): 1058-1071, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34802736

RESUMEN

In recent years, yogurt has been one of the most popular fermented dairy products and is sold worldwide. In this study, pH and titrated acid changes of 4 strains of Lactobacillus delbrueckii ssp. bulgaricus fermented milk during storage were detected. The difference between L. bulgaricus KLDS1.1011 and KLDS1.0207 was significant, with the latter exhibiting reduced acidity levels. Therefore, we determined the complete genome sequence of the 2 strains. Then the expression of specific genes and common genes related to glucose metabolism and proteolysis of L. bulgaricus KLDS1.1011 and KLDS1.0207 were detected by quantitative real-time reverse-transcription PCR. Analysis indicated that the key enzymes in glycometabolism and proteolysis of L. bulgaricus KLDS1.1011 were significantly different than those of L. bulgaricus KLDS1.0207. The contents of lactose and glucose decreased during storage of L. bulgaricus fermented milk, as determined by HPLC, and the contents of lactic acid and galactose increased, with L. bulgaricus KLDS1.1011 increasing less. With skim milk as a raw material, L. bulgaricus KLDS1.1011, KLDS1.0207, and Streptococcus thermophilus S1 were used as fermentation strains to yield yogurt at 42°C, and sensory evaluation was compared with yogurt fermented by commercial starter cultures. Yogurt from L. bulgaricus KLDS1.1011 was the highest-rated. Therefore, the study may provide guidelines for the development of yogurt starters.


Asunto(s)
Productos Lácteos Cultivados , Lactobacillus delbrueckii , Animales , Fermentación , Concentración de Iones de Hidrógeno , Lactobacillus delbrueckii/genética , Streptococcus thermophilus/genética , Yogur
5.
Food Funct ; 12(16): 7171-7184, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34269367

RESUMEN

The intestinal barrier is vital for preventing inflammatory bowel disease (IBD). This study aimed to investigate the potential mechanism behind the protective effects of B. dentium N8 on the intestinal barrier using the lipopolysaccharide (LPS)-induced Caco-2 cells model. Our probiotic validation results showed that B. dentium N8 had a higher adhesion ability and a more substantial inhibition effect on Escherichia coli ATCC 25922 adhesion to HT-29 cells. Regarding the epithelial integrity, B. dentium N8 significantly increased the trans-epithelial electrical resistance (TEER) value and decreased the paracellular permeability of Caco-2 cells stimulated by lipopolysaccharide (LPS). In addition, B. dentium N8 significantly increased ZO-1, occludin, and claudin-1 mRNA expression. B. dentium N8 downregulated the mRNA expression level of TLR4 and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6). Furthermore, B. dentium N8 had a better protective effect on the intestinal barrier than that of E7. Comparative genomics of B. dentium N8 and E7 showed B. dentium N8 had the specific genes encoding for adhesion ability and immune system regulation. The findings provide the theoretical basis for B. dentium N8 possessing a protective effect on the intestinal barrier, which indicate that it could be used as a novel therapy for IBD.


Asunto(s)
Bifidobacterium/metabolismo , Enfermedades Inflamatorias del Intestino/prevención & control , Mucosa Intestinal/metabolismo , Lipopolisacáridos , Probióticos/farmacología , Uniones Estrechas/metabolismo , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Probióticos/metabolismo , Uniones Estrechas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA