Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Med Res ; 54(2): 79-85, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609033

RESUMEN

BACKGROUND: In breast cancer (BC), hypoxia is associated with poor prognosis. Protein Salvador homolog 1 (SAV1) acts as a tumor suppressor and is downregulated in the cancer cells. However, there is limited data on the expression profile of SAV1 and its importance in BC. It has not been studied to evaluate this phenomenon in a hypoxic microenvironment yet. AIM: This study aimed to investigate SAV1 expression profiles under normoxia and hypoxia, and the potential of SAV1 in BC prognosis. METHODS: Gene and protein expression analyses were performed using Real-Time quantitative PCR (RT-qPCR) and immunocytochemistry (ICC), respectively, and in silico analyses were performed using The Cancer Genome Atlas (TCGA). The survival curves were constructed using KMplotter. RESULTS: SAV1 expression was lower in BC samples and tumor cell lines than in normal samples. The SAV1 mRNA levels were reduced in hypoxic estrogen receptor positive (ER+) tumors, which were associated with a lower survival probability as compared to normoxic ER+ tumors. Furthermore, lower levels of SAV1 were found in advanced cancer stage samples, which are associated with worse survival curves and can be a risk factor for BC. CONCLUSIONS: These data suggest a potential prognostic role of SAV1 in BC, with lower expressions associated with worse prognosis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Pronóstico , Hipoxia , Estadificación de Neoplasias , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Proteínas de Ciclo Celular/metabolismo
2.
Life Sci ; 281: 119768, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34186042

RESUMEN

AIMS: The purpose of this work was to study the effects of mesenchymal stem cells conditioned medium (MSC CM) treatment in animals with cholestatic liver fibrosis. MATERIALS AND METHODS: We induced cholestatic liver fibrosis by bile duct ligation in C57Bl/6 mice. In the 5th and 6th days after bile duct ligation proceeding, conditioned medium obtained of cultures of mesenchymal stem cells derived from adipose tissue was injected in the animals. Blood levels of hepatic transaminases, alkaline phosphatase and albumin were measured in each group. Analysis of collagen deposition was realized by Picro Sirius red staining and cytokine profiling was performed by cytometric bead array (CBA). KEY FINDINGS: Our results showed that MSC CM treatment decreased levels of hepatic enzymes and collagen deposition in the liver. After MSC CM treatment, profibrotic IL-17A was decreased andIL-6 and IL-4 were increased. SIGNIFICANCE: In summary, MSC CM treatment demonstrated therapeutic potential to cholestatic liver fibrosis, favoring matrix remodeling and cytokine profile towards liver regeneration.


Asunto(s)
Colestasis/patología , Cirrosis Hepática/patología , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Animales , Colestasis/metabolismo , Colágeno/metabolismo , Medios de Cultivo Condicionados , Citocinas/metabolismo , Citometría de Flujo , Cirrosis Hepática/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL
3.
Artículo en Inglés | MEDLINE | ID: mdl-34988430

RESUMEN

AIMS: To analyze therapeutic potential of the conditioned medium from adipose tissue-derived stem cells (ASC) cultivated in 2D (CM-2D) and 3D (CM-3D) models, in mice with Type 1 diabetes (T1D) induced by streptozotocin. MAIN METHODS: Viability andCD105 expression of 2D and 3D ASC were analyzed by flow cytometry. T1D was induced in mice by multiple injections of streptozocin. On the 28th and 29th days after the first injection of streptozocin, diabetic animals received CM-2D or CM-3D. Pancreatic, CM-2D, and CM-3D cytokines were analyzed by cytometric bead array (CBA) and insulin and PDX-1 were observed and quantified by immunohistochemistry. Apoptosis-related proteins were quantified by Western Blotting. KEY FINDINGS: ASC in three-dimensional culture released increased levels of IL-6 and IL-2, while IL-4 was decreased. CM-2D induced pancreatic PDX-1 expression and was able to reduce glycemia in diabetic mice one week after injections but not CM-3D. On the other hand, CM-2D and CM-3D were not able to reverse apoptosis of pancreatic cells in diabetic mice nor to increase insulin expression. SIGNIFICANCE: Together, these results demonstrate that the 3D cell culture secretome was not able to improve diabetes type 1 symptoms at the times observed, while 2D cell secretome improved glycemic levels in T1D mice.

4.
Cells ; 8(11)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671842

RESUMEN

Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Cirrosis Hepática/terapia , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Endoteliales/patología , Células Endoteliales/fisiología , Hepatocitos/fisiología , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Fallo Hepático/patología , Fallo Hepático/fisiopatología , Fallo Hepático/terapia , Regeneración Hepática/fisiología , Células Madre/fisiología
5.
Placenta ; 64: 7-16, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29626983

RESUMEN

INTRODUCTION: Bone marrow cells (BMC) from obese adult mice display an increased apoptosis rate over proliferation. Hematopoietic stem cells (HSC) form all blood cells and are important BMC used in cell therapy. Because it is known that prenatal development can be affected by adverse metabolic epigenetic programming from the maternal organism, this work aimed to investigate the effects of maternal overweight on placenta and fetal liver hematopoietic niches. METHODS: Overweight was induced in female mice by overfeeding during lactation. After Swiss females were mated with healthy males, fetuses at 19 dpc (day post conception) and placentas were analyzed. Maternal biometric parameters were compared, and hematopoiesis in the dissociated placenta and fetal liver cells was analyzed by flow cytometry. Placenta morphology and protein content were also studied. RESULTS: The model induced accumulation of adipose tissue, weight gain, and maternal hyperglycemia. Placentas from the overfed group (OG) displayed altered morphology, higher carbohydrate and lipid deposition, and increased protein content of fibronectin and PGC-1α. Cytometric analysis showed that placentas from OG presented a higher percentage of circulating macrophages, endothelial progenitor cells, HSC, and progenitor cells. No difference was detected in the percentage of neutrophil granulocytes and total leukocytes or in the proliferation of total cells, HSC, or total leukocytes. With regard to liver analysis of the OG group, there was a significant increase in circulating macrophages, primitive HSC, and oval cells but no difference in hematopoietic progenitor cells, total leukocytes, or leukocyte or total cell proliferation. CONCLUSION: Unregulated maternal metabolism can affect hematopoietic populations within the placenta and fetal liver.


Asunto(s)
Hematopoyesis , Sobrepeso/fisiopatología , Placenta/fisiopatología , Complicaciones del Embarazo/fisiopatología , Animales , Animales Recién Nacidos , Biometría , Femenino , Feto/patología , Hígado/patología , Masculino , Ratones , Sobrepeso/metabolismo , Sobrepeso/patología , Placenta/metabolismo , Placenta/patología , Embarazo , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/patología
6.
PLoS One ; 12(11): e0187970, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176797

RESUMEN

Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration.


Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Comunicación Celular , Colestasis/terapia , Citocinas/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/terapia , Animales , Movimiento Celular , Proliferación Celular , Quimiocina CXCL12/metabolismo , Colestasis/complicaciones , Colestasis/genética , Colestasis/patología , Colágeno/metabolismo , Citocinas/genética , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Exp Cell Res ; 336(1): 15-22, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978973

RESUMEN

Mitochondrial dysfunction has been associated with liver cholestatis. Toxic bile salt accumulation leads to chronic injury with mitochondrial damage, ROS increase and apoptosis, resulting in liver dysfunction. This study aimed to analyze mitochondrial bioenergetics in rats with hepatic fibrosis induced by bile duct ligation (BDL) after BMMNC transplantation. Livers were collected from normal rats, fibrotic rats after 14 and 21 days of BDL (F14d and F21d) and rats that received BMMNC at 14 days of BDL, analyzed after 7 days. F21d demonstrated increased collagen I content and consequently decrease after BMMNC transplantation. Both F14d and F21d had significantly reduced mitochondrial oxidation capacity and increased mitochondrial uncoupling, which were restored to levels similar to those of normal group after BMMNC transplantation. In addition, F21d had a significantly increase of UCP2, and reduced PGC-1α content. However, after BMMNC transplantation both proteins returned to levels similar to normal group. Moreover, F14d had a significantly increase in 4-HNE content compared to normal group, but after BMMNC transplantation 4-HNE content significantly reduced, suggesting oxidative stress reduction. Therefore, BMMNC transplantation has a positive effect on hepatic mitochondrial bioenergetics of cholestatic rats, increasing oxidative capacity and reducing oxidative stress, which, in turn, contribute to liver function recover.


Asunto(s)
Trasplante de Médula Ósea , Colestasis/prevención & control , Metabolismo Energético , Cirrosis Hepática/prevención & control , Hígado/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo , Animales , Western Blotting , Células Cultivadas , Colestasis/metabolismo , Colestasis/patología , Peroxidación de Lípido , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Mitocondrias/patología , Oxidación-Reducción , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA