Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(6): 1660-1672, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35238400

RESUMEN

MIDAS-P is a plant expression vector with blue/white screening for iterative cloning of multiple, tandemly arranged transcription units (TUs). We have used the MIDAS-P system to investigate the expression of up to five genes encoding three anti-HIV proteins and the reporter gene DsRed in Nicotiana benthamiana plants. The anti-HIV cocktail was made up of a broadly neutralizing monoclonal antibody (VRC01), a lectin (Griffithsin), and a single-chain camelid nanobody (J3-VHH). Constructs containing different combinations of 3, 4, or 5 TUs encoding different components of the anti-HIV cocktail were assembled. Messenger RNA (mRNA) levels of the genes of interest decreased beyond two TUs. Coexpression of the RNA silencing suppressor P19 dramatically increased the overall mRNA and protein expression levels of each component. The position of individual TUs in 3 TU constructs did not affect mRNA or protein expression levels. However, their expression dropped to non-detectable levels in constructs with four or more TUs each containing the same promoter and terminator elements, with the exception of DsRed at the first or last position in 5 TU constructs. This drop was alleviated by co-expression of P19. In short, the MIDAS-P system is suitable for the simultaneous expression of multiple proteins in one construct.


Asunto(s)
Vectores Genéticos , Nicotiana , Expresión Génica , Vectores Genéticos/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
Curr Opin Biotechnol ; 61: 53-59, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31751895

RESUMEN

Interest in applications and benefits that Molecular Pharming might offer to Low and Middle Income Countries has always been a potent driver for the research discipline, and a major reason why many scientists entered the field. Although enthusiasm remains high, the reality is that such a game-changing innovation would always take longer than traditional uptake of new technology in developed countries, and be complicated by external factors beyond technical feasibility. Excitingly, signs of increasing interest by LMICS in Molecular Pharming are now emerging. Here, three case studies from Thailand, South Africa and Brazil are used to identify some of the key issues when a new investment into Molecular Pharming manufacturing capacity is under consideration. At present, academic research is not necessarily addressing these issues. Only by understanding the concerns, can members of the academic community contribute to helping the development of Molecular Pharming for LMICs by focusing their research efforts appropriately.


Asunto(s)
Países en Desarrollo , Agricultura Molecular , Comercio
3.
Sci Rep ; 9(1): 8083, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147620

RESUMEN

Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target. The non-mammalian nature of this enzyme offers the potential of discovering plant specific inhibitory compounds with minimal impact on animals and humans, perhaps leading to the development of new non-toxic herbicides. The best characterised and most highly expressed isoform of the enzyme in the model-dicot Arabidopsis, AtIPCS2, was formatted into a yeast-based assay which was then utilized to screen a proprietary library of over 11,000 compounds provided by Bayer AG. Hits from this screen were validated in a secondary in vitro enzyme assay. These studies led to the identification of a potent inhibitor that showed selectivity for AtIPCS2 over the yeast orthologue, and activity against Arabidopsis seedlings. This work highlighted the use of a yeast-based screening assay to discover herbicidal compounds and the status of the plant IPCS as a novel herbicidal target.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Herbicidas/farmacología , Hexosiltransferasas/antagonistas & inhibidores , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pruebas de Enzimas , Técnicas de Inactivación de Genes , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Plantones/efectos de los fármacos
4.
PLoS One ; 14(5): e0217087, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31120963

RESUMEN

This research was undertaken to investigate the global role of the plant inositol phosphorylceramide synthase (IPCS), a non-mammalian enzyme previously shown to be associated with the pathogen response. RNA-Seq analyses demonstrated that over-expression of inositol phosphorylceramide synthase isoforms AtIPCS1, 2 or 3 in Arabidopsis thaliana resulted in the down-regulation of genes involved in plant response to pathogens. In addition, genes associated with the abiotic stress response to salinity, cold and drought were found to be similarly down-regulated. Detailed analyses of transgenic lines over-expressing AtIPCS1-3 at various levels revealed that the degree of down-regulation is specifically correlated with the level of IPCS expression. Singular enrichment analysis of these down-regulated genes showed that AtIPCS1-3 expression affects biological signaling pathways involved in plant response to biotic and abiotic stress. The up-regulation of genes involved in photosynthesis and lipid localization was also observed in the over-expressing lines.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Hexosiltransferasas/metabolismo , Enfermedades de las Plantas/microbiología , Estrés Fisiológico , Proteínas de Arabidopsis/genética , Erwinia amylovora , Perfilación de la Expresión Génica , Hexosiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA