Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638999

RESUMEN

Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced ß3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.


Asunto(s)
Microambiente Celular , Ambiente , Glicoproteínas de Membrana/metabolismo , Meninges/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente , Fluoxetina/farmacología , Meninges/efectos de los fármacos , Meninges/patología , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo
2.
Diabetes ; 69(11): 2324-2339, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32778569

RESUMEN

Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.


Asunto(s)
Aminoácidos/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Metabolismo Energético/fisiología , Homeostasis , Obesidad/dietoterapia , Adipoquinas/metabolismo , Alimentación Animal/análisis , Animales , Composición Corporal , Dieta , Proteínas en la Dieta/análisis , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Longevidad , Ratones , Ratones Endogámicos C57BL
3.
Pharmacol Res ; 158: 104863, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32407957

RESUMEN

Neural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal maturation. We increased energy metabolism of differentiating neurons derived both from murine NSCs and human induced pluripotent stem cells (iPSCs) by supplementing the cell culture medium with a mixture composed of branched-chain amino acids, essential amino acids, TCA cycle precursors and co-factors. We found that treated differentiating neuronal cells with enhanced energy metabolism increased: i) total dendritic length; ii) the mean number of branches and iii) the number and maturation of the dendritic spines. Furthermore, neuronal spines in treated neurons appeared more stable with stubby and mushroom phenotype and with increased expression of molecules involved in synapse formation. Treated neurons modified their mitochondrial dynamics increasing the mitochondrial fusion and, consistently with the increase of cellular ATP content, they activated cellular mTORC1 dependent p70S6 K1 anabolism. Global transcriptomic analysis further revealed that treated neurons induce Nrf2 mediated gene expression. This was correlated with a functional increase in the Reactive Oxygen Species (ROS) scavenging mechanisms. In conclusion, persistent branched-chain amino acids-driven metabolic shift toward energy metabolism enhanced neuronal differentiation and antioxidant defences. These findings offer new opportunities to pharmacologically modulate NSC neuronal differentiation and to develop effective strategies for treating neurodegenerative diseases.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Diferenciación Celular/fisiología , Metabolismo Energético/efectos de los fármacos , Células-Madre Neurales/fisiología , Adenosina Trifosfato/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/genética , Sinapsis/fisiología , Sinapsis/ultraestructura , Transcriptoma
4.
Front Pharmacol ; 8: 703, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075188

RESUMEN

Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

5.
Biochem Pharmacol ; 141: 4-22, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28690140

RESUMEN

"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.


Asunto(s)
Células Madre Adultas/fisiología , Encéfalo/citología , Encéfalo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Adulto , Células Madre Adultas/trasplante , Animales , Diferenciación Celular/fisiología , Humanos , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Trasplante de Células Madre/métodos , Trasplante de Células Madre/tendencias
6.
Cell Stem Cell ; 20(3): 360-373.e7, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-27889318

RESUMEN

Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2+ neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Corteza Cerebral/citología , Meninges/citología , Neurogénesis , Neuroglía/citología , Neuronas/citología , Animales , Animales Recién Nacidos , Linaje de la Célula , Embrión de Mamíferos/citología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Nestina/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Esferoides Celulares/citología , Coloración y Etiquetado , Transcriptoma/genética
7.
Front Cell Neurosci ; 9: 383, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483637

RESUMEN

Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...