Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34833805

RESUMEN

Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models' vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.


Asunto(s)
Redes Neurales de la Computación
2.
Med Biol Eng Comput ; 59(6): 1299-1310, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34003394

RESUMEN

Early and automatic diagnosis of Solitary Pulmonary Nodules (SPN) in Computed Tomography (CT) chest scans can provide early treatment for patients with lung cancer, as well as doctor liberation from time-consuming procedures. The purpose of this study is the automatic and reliable characterization of SPNs in CT scans extracted from Positron Emission Tomography and Computer Tomography (PET/CT) system. To achieve the aforementioned task, Deep Learning with Convolutional Neural Networks (CNN) is applied. The strategy of training specific CNN architectures from scratch and the strategy of transfer learning, by utilizing state-of-the-art pre-trained CNNs, are compared and evaluated. To enhance the training sets, data augmentation is performed. The publicly available database of CT scans, named as Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), is also utilized to further expand the training set and is added to the PET/CT dataset. The results highlight the effectiveness of transfer learning and data augmentation for the classification task of small datasets. The best accuracy obtained on the PET/CT dataset reached 94%, utilizing a modification proposal of a state-of-the-art CNN, called VGG16, and enhancing the training set with LIDC-IDRI dataset. Besides, the proposed modification outperforms in terms of sensitivity several similar researches, which exploit the benefits of transfer learning. Overview of the experiment setup. The two datasets containing nodule representations are combined to evaluate the effectiveness of transfer learning over the traditional approach of training Convolutional Neural Networks from scratch.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Aprendizaje Automático , Redes Neurales de la Computación , Tomografía Computarizada por Tomografía de Emisión de Positrones , Interpretación de Imagen Radiográfica Asistida por Computador , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA