Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7097, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154007

RESUMEN

Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.


Asunto(s)
Aorta , Macrófagos , Animales , Macrófagos/citología , Macrófagos/metabolismo , Aorta/citología , Ratones , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Diferenciación Celular , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Angiotensina II , Proliferación Celular , Células Madre/citología , Células Madre/metabolismo , Ratones Endogámicos C57BL , Femenino , Neovascularización Fisiológica , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Masculino , Hematopoyesis/fisiología , Tirosina Quinasa 3 Similar a fms
3.
Physiol Genomics ; 56(7): 469-482, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525531

RESUMEN

Single-cell technologies such as flow cytometry and single-cell RNA sequencing have allowed for comprehensive characterization of the kidney cellulome. However, there is a disparity in the various protocols for preparing kidney single-cell suspensions. We aimed to address this limitation by characterizing kidney cellular heterogeneity using three previously published single-cell preparation protocols. Single-cell suspensions were prepared from male and female C57BL/6 kidneys using the following kidney tissue dissociation protocols: a scRNAseq protocol (P1), a multi-tissue digestion kit from Miltenyi Biotec (P2), and a protocol established in our laboratory (P3). Following dissociation, flow cytometry was used to identify known major cell types including leukocytes (myeloid and lymphoid), vascular cells (smooth muscle and endothelial), nephron epithelial cells (intercalating, principal, proximal, and distal tubule cells), podocytes, and fibroblasts. Of the protocols tested, P2 yielded significantly less leukocytes and type B intercalating cells compared with the other techniques. P1 and P3 produced similar yields for most cell types; however, endothelial and myeloid-derived cells were significantly enriched using P1. Significant sex differences were detected in only two cell types: granulocytes (increased in males) and smooth muscle cells (increased in females). Future single-cell studies that aim to enrich specific kidney cell types may benefit from this comparative analysis.NEW & NOTEWORTHY This study is the first to evaluate published single-cell suspension preparation protocols and their ability to produce high-quality cellular yields from the mouse kidney. Three single-cell digestion protocols were compared and each produced significant differences in kidney cellular heterogeneity. These findings highlight the importance of the digestion protocol when using single-cell technologies. This study may help future single-cell science research by guiding researchers to choose protocols that enrich certain cell types of interest.


Asunto(s)
Riñón , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Animales , Análisis de la Célula Individual/métodos , Femenino , Masculino , Ratones , Riñón/metabolismo , Riñón/citología , Citometría de Flujo/métodos , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/citología
4.
Hypertension ; 81(4): 738-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318714

RESUMEN

Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Humanos , ARN , Aorta/metabolismo , Enfermedades de la Aorta/genética , Perfilación de la Expresión Génica , Aterosclerosis/genética , Aterosclerosis/metabolismo
5.
J Org Chem ; 89(1): 345-355, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113466

RESUMEN

The chemiluminescence (CL) reaction of eight different 2-(4-hydroxyphenyl)-4,5-dihydrothiazole-4-carboxylate esters with an organic superbase and oxygen was investigated through a kinetic and computational study. These esters are all analogues to the luciferin substrate involved in efficient firefly bioluminescence. The kinetic data obtained from CL emission and light absorption assays were used in the context of linear free energy relationships (LFER); we obtained the Hammett reaction constant ρ = +1.62 ± 0.09 and the Brønsted constant ßlg = -0.39 ± 0.04. These observations from LFER, together with activation parameters obtained from Arrhenius plots, suggest that the formation of the high-energy intermediate (HEI) 1,2-dioxetanone occurs via a concerted mechanism during the rate-determining step of the reaction. Calculations performed using density functional theory support a late transition state for HEI formation within the reaction mechanism pathway, which was described considering geometric parameters, Wiberg bond indices from natural bond order analysis, and the atomic charges derived from the electrostatic potential.

6.
iScience ; 26(10): 107759, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736052

RESUMEN

Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.

7.
Basic Res Cardiol ; 118(1): 11, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988733

RESUMEN

Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice. Obesity was induced in female mice via western diet (WD) feeding alongside littermates fed standard diet. Global MR blockade with spironolactone prevented coronary and cardiac dysfunction in obese females and specific deletion of SMC-MR was sufficient to prevent obesity-associated coronary and cardiac diastolic dysfunction. Cardiac gene expression profiling suggested reduced cardiac inflammation in WD-fed mice with SMC-MR deletion independent of blood pressure, aortic stiffening, and cardiac hypertrophy. Further mechanistic studies utilizing single-cell RNA sequencing of non-cardiomyocyte cell populations revealed novel impacts of SMC-MR deletion on the cardiac cellulome in obese mice. Specifically, WD feeding induced inflammatory gene signatures in non-myocyte populations including B/T cells, macrophages, and endothelium as well as increased coronary VCAM-1 protein expression, independent of cardiac fibrosis, that was prevented by SMC-MR deletion. Further, SMC-MR deletion induced a basal reduction in cardiac mast cells and prevented WD-induced cardiac pro-inflammatory chemokine expression and leukocyte recruitment. These data reveal a central role for SMC-MR signaling in obesity-associated coronary and cardiac dysfunction, thus supporting the emerging paradigm of a vascular origin of cardiac dysfunction in obesity.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Masculino , Femenino , Ratones , Animales , Ratones Obesos , Insuficiencia Cardíaca/complicaciones , Multiómica , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Volumen Sistólico , Antagonistas de Receptores de Mineralocorticoides/farmacología , Obesidad/metabolismo
10.
STAR Protoc ; 2(4): 100866, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34647038

RESUMEN

This protocol features parallel isolation of myocytes and non-myocytes from murine hearts. It was designed with considerations for (1) time required to extract cardiac cells, (2) cell viability, and (3) protocol scalability. Here, a peristaltic pump and 3D-printed elements are combined to perfuse the heart with enzymes to dissociate cells. Myocytes and non-myocytes extracted using this protocol are separated by centrifugation and/or fluorescence-activated cell sorting for use in downstream applications including single-cell omics or other bio-molecular analyses. For complete details on the use and execution of this protocol, please refer to McLellan et al. (2020).


Asunto(s)
Separación Celular/métodos , Miocardio/citología , Miocitos Cardíacos , Análisis de la Célula Individual/métodos , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Genómica , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/clasificación , Miocitos Cardíacos/citología
12.
Cardiovasc Diabetol ; 20(1): 116, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074290

RESUMEN

BACKGROUND: Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. METHODS: Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. RESULTS: Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e':a' ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. CONCLUSIONS: Murine diabetes results in distinct changes in cardiac cellularity. These changes-in particular increased levels of fibroblasts-offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/etiología , Fibroblastos/patología , Miocardio/patología , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Diástole , Dieta Alta en Grasa , Fibroblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Masculino , Ratones , Monocitos/metabolismo , Monocitos/patología , Miocardio/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Estreptozocina , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
13.
J Org Chem ; 86(9): 6633-6647, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33876635

RESUMEN

A kinetic study of the chemiluminescent (CL) reaction mechanism of lophine-derived hydroperoxides and silylperoxides induced by a base and fluoride, respectively, provided evidence for the formation of a 1,2-dioxetane as a high-energy intermediate (HEI) of this CL transformation. This was postulated using a linear Hammett relationship, consistent with the formation of negative charge on the transition state of HEI generation (ρ > 1). The decomposition of this HEI leads to chemiexcitation with overall low singlet excited state formation quantum yield (ΦS from 1.1 to 14.5 × 10-5 E mol-1); nonetheless, ΦS = 1.20 × 10-3 E mol-1 was observed with both peroxides substituted with bromine. The use of electron-donating substituents increases chemiexcitation efficiency, while it also reduces the rate for both formation and decomposition of the HEI. Different possible pathways for HEI decomposition and chemiexcitation are discussed in light of literature data from the perspective of the substituent effect. This system could be explored in the future for analytical and labeling purposes or for biological oxidation through chemiexcitation.


Asunto(s)
Compuestos Heterocíclicos con 1 Anillo , Luminiscencia , Imidazoles , Peróxidos
15.
Cardiovasc Res ; 117(10): 2252-2262, 2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32941598

RESUMEN

AIMS: Sex differences have been consistently identified in cardiac physiology and incidence of cardiac disease. However, the underlying biological causes for the differences remain unclear. We sought to characterize the cardiac non-myocyte cellular landscape in female and male hearts to determine whether cellular proportion of the heart is sex-dependent and whether endocrine factors modulate the cardiac cell proportions. METHODS AND RESULTS: Utilizing high-dimensional flow cytometry and immunofluorescence imaging, we found significant sex-specific differences in cellular composition of the heart in adult and juvenile mice, that develops postnatally. Removal of systemic gonadal hormones by gonadectomy results in rapid sex-specific changes in cardiac non-myocyte cellular proportions including alteration in resident mesenchymal cell and leucocyte populations, indicating gonadal hormones and their downstream targets regulate cardiac cellular composition. The ectopic reintroduction of oestrogen and testosterone to female and male mice, respectively, reverses many of these gonadectomy-induced compositional changes. CONCLUSION: This work shows that the constituent cell types of the mouse heart are hormone-dependent and that the cardiac cellular landscapes are distinct in females and males, remain plastic, and can be rapidly modulated by endocrine factors. These observations have implications for strategies aiming to therapeutically alter cardiac cellular heterogeneity and underscore the importance of considering biological sex for studies examining cardiac physiology and stress responses.


Asunto(s)
Estradiol/metabolismo , Miocardio/metabolismo , Testosterona/metabolismo , Factores de Edad , Animales , Separación Celular , Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Masculino , Ratones Endogámicos C57BL , Miocardio/citología , Orquiectomía , Ovariectomía , RNA-Seq , Caracteres Sexuales , Análisis de la Célula Individual , Testosterona/farmacología , Transcriptoma
16.
Biochem Soc Trans ; 48(6): 2483-2493, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33259583

RESUMEN

Single-cell transcriptomics enables inference of context-dependent phenotypes of individual cells and determination of cellular diversity of complex tissues. Cardiac fibrosis is a leading factor in the development of heart failure and a major cause of morbidity and mortality worldwide with no effective treatment. Single-cell RNA-sequencing (scRNA-seq) offers a promising new platform to identify new cellular and molecular protagonists that may drive cardiac fibrosis and development of heart failure. This review will summarize the application scRNA-seq for understanding cardiac fibrosis and development of heart failure. We will also discuss some key considerations in interpreting scRNA-seq data and some of its limitations.


Asunto(s)
Secuencia de Bases , Corazón/fisiología , Miocardio/metabolismo , Transcriptoma , Animales , Biología Computacional , Fibroblastos/metabolismo , Fibrosis/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Homeostasis , Humanos , Ratones , Miofibroblastos/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
17.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32795101

RESUMEN

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Asunto(s)
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Miocardio/metabolismo , Análisis de la Célula Individual , Estrés Fisiológico , Animales , Cardiomegalia/patología , Fibroblastos/patología , Fibrosis , Ratones , Miocardio/patología , Pirofosfatasas/metabolismo , Trombospondinas/metabolismo
19.
J Am Coll Cardiol ; 72(18): 2213-2230, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30360829

RESUMEN

Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Homeostasis/fisiología , Macrófagos/fisiología , Neovascularización Fisiológica/fisiología , Animales , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/patología , Corazón/embriología , Corazón/fisiología , Humanos
20.
Cell Rep ; 22(3): 600-610, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29346760

RESUMEN

Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Activación Transcripcional/genética , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA