Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 52016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27863209

RESUMEN

While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Envejecimiento , Dinámicas Mitocondriales , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Enfermedades de la Retina/patología , Proteínas Adaptadoras Transductoras de Señales/análisis , Animales , Ratones , Mitocondrias/química , Proteínas Mutantes/análisis , Proteínas Nucleares/análisis
2.
J Am Chem Soc ; 136(52): 17987-95, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25470189

RESUMEN

Influenza virus infections lead to numerous deaths and millions of hospitalizations each year. One challenge facing anti-influenza drug development is the heterogeneity of the circulating influenza viruses, which comprise several strains with variable susceptibility to antiviral drugs. For example, the wild-type (WT) influenza A viruses, such as the seasonal H1N1, tend to be sensitive to antiviral drugs, amantadine and rimantadine, while the S31N mutant viruses, such as the pandemic 2009 H1N1 (H1N1pdm09) and seasonal H3N2, are resistant to this class of drugs. Thus, drugs targeting both WT and the S31N mutant are highly desired. We report our design of a novel class of dual inhibitors along with their ion channel blockage and antiviral activities. The potency of the most active compound 11 in inhibiting WT and the S31N mutant influenza viruses is comparable with that of amantadine in inhibiting WT influenza virus. Solution NMR studies and molecular dynamics (MD) simulations of drug-M2 interactions supported our design hypothesis: namely, the dual inhibitor binds in the WT M2 channel with an aromatic group facing down toward the C-terminus, while the same drug binds in the S31N M2 channel with its aromatic group facing up toward the N-terminus. The flip-flop mode of drug binding correlates with the structure-activity relationship (SAR) and has paved the way for the next round of rational design of broad-spectrum antiviral drugs.


Asunto(s)
Amantadina/farmacología , Descubrimiento de Drogas , Farmacorresistencia Viral/genética , Virus de la Influenza A/efectos de los fármacos , Mutación , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/metabolismo , Animales , Perros , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Simulación de Dinámica Molecular , Porosidad , Unión Proteica , Conformación Proteica , Inhibidores de la Bomba de Protones/química , Inhibidores de la Bomba de Protones/metabolismo , Bombas de Protones/química , Bombas de Protones/genética , Relación Estructura-Actividad , Tiofenos/química , Tiofenos/metabolismo , Tiofenos/farmacología
3.
J Med Chem ; 57(13): 5738-47, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24941437

RESUMEN

Amantadine inhibits the M2 proton channel of influenza A virus, yet most of the currently circulating strains of the virus carry mutations in the M2 protein that render the virus amantadine-resistant. While most of the research on novel amantadine analogues has revolved around the synthesis of novel adamantane derivatives, we have recently found that other polycyclic scaffolds effectively block the M2 proton channel, including amantadine-resistant mutant channels. In this work, we have synthesized and characterized a series of pyrrolidine derivatives designed as analogues of amantadine. Inhibition of the wild-type M2 channel and the A/M2-S31N, A/M2-V27A, and A/M2-L26F mutant forms of the channel were measured in Xenopus oocytes using two-electrode voltage clamp assays. Most of the novel compounds inhibited the wild-type ion channel in the low micromolar range. Of note, two of the compounds inhibited the amantadine-resistant A/M2-V27A and A/M2-L26F mutant ion channels with submicromolar and low micromolar IC50, respectively. None of the compounds was found to inhibit the S31N mutant ion channel.


Asunto(s)
Amantadina/análogos & derivados , Aminas/síntesis química , Virus de la Influenza A/efectos de los fármacos , Pirrolidinas/síntesis química , Proteínas de la Matriz Viral/antagonistas & inhibidores , Aminas/farmacología , Animales , Perros , Farmacorresistencia Viral , Canales Iónicos/efectos de los fármacos , Células de Riñón Canino Madin Darby , Modelos Moleculares , Mutación , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Técnicas de Placa-Clamp , Pirrolidinas/farmacología , Relación Estructura-Actividad , Proteínas de la Matriz Viral/genética , Xenopus
4.
Biochim Biophys Acta ; 1838(4): 1082-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24269540

RESUMEN

The influenza A/M2 protein is a homotetrameric single-pass integral membrane protein encoded by the influenza A viral genome. Its transmembrane domain represents both a crucial drug target and a minimalistic model system for transmembrane proton transport and charge stabilization. Recent structural and functional studies of M2 have suggested that the proton transport mechanism involves sequential extraviral protonation and intraviral deprotonation of a highly conserved His37 side chain by the transported proton, consistent with a pH-activated proton shuttle mechanism. Multiple tautomeric forms of His can be formed, and it is not known whether they contribute to the mechanism of proton shuttling. Here we present the thermodynamic and functional characterization of an unnatural amino acid mutant at His37, where the imidazole side chain is substituted with a 4-thiazolyl group that is unable to undergo tautomerization and has a significantly lower solution pKa. The mutant construct has a similar stability to the wild-type protein at pH8 in bilayers and is virtually inactive at external pH7.4 in a semiquantitative liposome flux assay as expected from its lower sidechain pKa. However when the external buffer pH is lowered to 4.9 and 2.4, the mutant shows increasing amantadine sensitive flux of a similar magnitude to that of the wild type construct at pH7.4 and 4.9 respectively. These findings are in line with mechanistic hypotheses suggesting that proton flux through M2 is mediated by proton exchange from adjacent water molecules with the His37 sidechain, and that tautomerization is not required for proton translocation. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.


Asunto(s)
Virus de la Influenza A/química , Proteínas de la Matriz Viral/fisiología , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutación , Termodinámica , Proteínas de la Matriz Viral/química
5.
J Med Chem ; 56(22): 9265-74, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24237039

RESUMEN

We have synthesized and characterized a series of compounds containing the 3-azatetracyclo[5.2.1.1(5,8).0(1,5)]undecane scaffold designed as analogues of amantadine, an inhibitor of the M2 proton channel of influenza A virus. Inhibition of the wild-type (WT) M2 channel and the amantadine-resistant A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Most of the novel compounds inhibited the WT ion channel in the low micromolar range. Of note, several compounds inhibited the A/M2 V27A mutant ion channel, one of them with submicromolar IC50. None of the compounds was found to inhibit the S31N mutant ion channel. The antiviral activity of three novel dual WT and A/M2-V27A channels inhibitors was confirmed by influenza virus yield assays.


Asunto(s)
Compuestos Aza/química , Compuestos Aza/farmacología , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/farmacología , Guanidinas/química , Guanidinas/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Mutación , Proteínas de la Matriz Viral/antagonistas & inhibidores , Amantadina/farmacología , Animales , Antivirales/química , Antivirales/farmacología , Antivirales/toxicidad , Compuestos Aza/toxicidad , Hidrocarburos Aromáticos con Puentes/toxicidad , Perros , Diseño de Fármacos , Farmacorresistencia Viral/efectos de los fármacos , Guanidinas/toxicidad , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Pirrolidinas/química , Relación Estructura-Actividad , Proteínas de la Matriz Viral/genética
6.
Structure ; 21(11): 2033-41, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24139991

RESUMEN

Channel gating and proton conductance of the influenza A virus M2 channel result from complex pH-dependent interactions involving the pore-lining residues His37, Trp41, and Asp44. Protons diffusing from the outside of the virus protonate His37, which opens the Trp41 gate and allows one or more protons to move into the virus interior. The Trp41 gate gives rise to a strong asymmetry in the conductance, favoring rapid proton flux only when the outside is at acid pH. Here, we show that the proton currents recorded for mutants of Asp44, including D44N found in the A/FPV/Rostock/34 strain, lose this asymmetry. Moreover, NMR and MD simulations show that the mutations induce a conformational change similar to that induced by protonation of His37 at low pH, and decrease the structural stability of the hydrophobic seal associated with the Trp41 gate. Thus, Asp44 is able to determine two important properties of the M2 proton channel.


Asunto(s)
Virus de la Influenza A , Proteínas de la Matriz Viral/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Ácido Aspártico/química , Células Cultivadas , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Oocitos/fisiología , Técnicas de Placa-Clamp , Estabilidad Proteica , Estructura Terciaria de Proteína , Triptófano/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Xenopus laevis
7.
Antiviral Res ; 99(3): 281-91, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23800838

RESUMEN

We here report on the synthesis of new series of polycyclic amines initially designed as ring-rearranged analogs of amantadine and featuring pentacyclo, hexacyclo, and octacyclo rings. A secondary amine, 3-azahexacyclo[7.6.0.0¹,5.05,¹².06,¹°.0¹¹,¹5]pentadeca-7,13-diene, 3, effectively inhibited A/M2 proton channel function, and, moreover, possessed dual activity against an A/H3N2 virus carrying a wild-type A/M2 proton channel, as well as an amantadine-resistant A/H1N1 virus. Among the polycyclic amines that did not inhibit influenza A/M2 proton channel function, several showed low-micromolar activity against tested A/H1N1 strains (in particular, the A/PR/8/34 strain), but not A/H3N2 influenza viruses. A/PR/8/34 mutants selected for resistance to these compounds possessed mutations in the viral hemagglutinin that markedly increased the hemolysis pH. Our data suggest that A/H1N1 viruses such as the A/PR/8/34 strain are particularly sensitive to a subtle increase in the endosomal pH, as caused by the polycyclic amine compounds.


Asunto(s)
Aminas/farmacología , Antivirales/farmacología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Compuestos Policíclicos/farmacología , Amantadina , Aminas/química , Antivirales/síntesis química , Antivirales/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Gripe Humana/tratamiento farmacológico , Estructura Molecular , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/química , Relación Estructura-Actividad
8.
IEEE Trans Biomed Eng ; 60(7): 2042-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23446027

RESUMEN

During a conventional whole-cell patch clamp experiment, diffusible cytosolic ions or molecules absent in the pipette solution can become diluted by a factor of one million or more, leading to diminished current or fluorescent signals. Existing methods to prevent or limit cytosol diffusion include reducing the diameter of the pipette's orifice, adding cytosolic extract or physiological entities to the pipette solution, and using the perforated patch clamp configuration. The first method introduces measurement error in recorded signals from increased series resistance and the latter two are cumbersome to perform. In addition, most perforated patch configurations, prevent investigators from using test compounds in the pipette solution. We present a method to overcome these limitations by minimizing cytosol dilution using a novel pipette holder. Cell-attached configuration is obtained with the pipette filled with pipette solution. Most of the pipette solution is then replaced with mineral oil so that cytosol dilution can be minimized in whole-cell configuration. To accomplish this requires a suction line and two Ag/AgCl electrodes inside the pipette. Testing our novel pipette holder with Chinese Hamster Ovarian cells, we demonstrate cytosol dilution factors between 76 and 234. For large cells with somas greater than 40 µm, cytosol dilution factors of 10 or less are achievable.


Asunto(s)
Citosol/química , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Difusión , Diseño de Equipo , Análisis de Falla de Equipo
9.
J Med Chem ; 56(7): 2804-12, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23437766

RESUMEN

Anti-influenza drugs, amantadine and rimantadine, targeting the M2 channel from influenza A virus are no longer effective because of widespread drug resistance. S31N is the predominant and amantadine-resistant M2 mutant, present in almost all of the circulating influenza A strains as well as in the pandemic 2009 H1N1 and the highly pathogenic H5N1 flu strains. Thus, there is an urgent need to develop second-generation M2 inhibitors targeting the S31N mutant. However, the S31N mutant presents a huge challenge to drug discovery, and it has been considered undruggable for several decades. Using structural information, classical medicinal chemistry approaches, and M2-specific biological testing, we discovered benzyl-substituted amantadine derivatives with activity against both S31N and WT, among which 4-(adamantan-1-ylaminomethyl)-benzene-1,3-diol (44) is the most potent dual inhibitor. These inhibitors demonstrate that S31N is a druggable target and provide a new starting point to design novel M2 inhibitors that address the problem of drug-resistant influenza A infections.


Asunto(s)
Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Mutación , Proteínas de la Matriz Viral/genética , Antivirales/química , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Relación Estructura-Actividad
10.
PLoS One ; 8(2): e55271, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383318

RESUMEN

The M2 proton channel of the influenza A virus is the target of the anti-influenza drugs amantadine and rimantadine. The effectiveness of these drugs has been dramatically limited by the rapid spread of drug resistant mutations, mainly at sites S31N, V27A and L26F in the pore of the channel. Despite progress in designing inhibitors of V27A and L26F M2, there are currently no drugs targeting these mutated channels in clinical trials. Progress in developing new drugs has been hampered by the lack of a robust assay with sufficient throughput for discovery of new active chemotypes among chemical libraries and sufficient sensitivity to provide the SAR data essential for their improvement and development as drugs. In this study we adapted a yeast growth restoration assay, in which expression of the M2 channel inhibits yeast growth and exposure to an M2 channel inhibitor restores growth, into a robust and sensitive high-throughput screen for M2 channel inhibitors. A screen of over 250,000 pure chemicals and semi-purified fractions from natural extracts identified 21 active compounds comprising amantadine, rimantadine, 13 related adamantanes and 6 non-adamantanes. Of the non-adamantanes, hexamethylene amiloride and a triazine derivative represented new M2 inhibitory chemotypes that also showed antiviral activity in a plaque reduction assay. Of particular interest is the fact that the triazine derivative was not sufficiently potent for detection as an inhibitor in the traditional two electrode voltage clamp assay for M2 channel activity, but its discovery in the yeast assay led to testing of analogues of which one was as potent as amantadine.


Asunto(s)
Antivirales/aislamiento & purificación , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/genética , Antivirales/farmacología , Mutación Missense/genética , Técnicas de Placa-Clamp , Sensibilidad y Especificidad , Levaduras/efectos de los fármacos , Levaduras/crecimiento & desarrollo
11.
Proc Natl Acad Sci U S A ; 110(4): 1315-20, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23302696

RESUMEN

The influenza A virus M2 proton channel (A/M2) is the target of the antiviral drugs amantadine and rimantadine, whose use has been discontinued due to widespread drug resistance. Among the handful of drug-resistant mutants, S31N is found in more than 95% of the currently circulating viruses and shows greatly decreased inhibition by amantadine. The discovery of inhibitors of S31N has been hampered by the limited size, polarity, and dynamic nature of its amantadine-binding site. Nevertheless, we have discovered small-molecule drugs that inhibit S31N with potencies greater than amantadine's potency against WT M2. Drug binding locks the protein into a well-defined conformation, and the NMR structure of the complex shows the drug bound in the homotetrameric channel, threaded between the side chains of Asn31. Unrestrained molecular dynamics simulations predicted the same binding site. This S31N inhibitor, like other potent M2 inhibitors, contains a charged ammonium group. The ammonium binds as a hydrate to one of three sites aligned along the central cavity that appear to be hotspots for inhibition. These sites might stabilize hydronium-like species formed as protons diffuse through the outer channel to the proton-shuttling residue His37 near the cytoplasmic end of the channel.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Genes Fúngicos , Virus de la Influenza A/química , Virus de la Influenza A/genética , Mutación , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Amantadina/análogos & derivados , Amantadina/síntesis química , Amantadina/química , Amantadina/farmacología , Antivirales/síntesis química , Sitios de Unión , Diseño de Fármacos , Farmacorresistencia Viral/genética , Humanos , Virus de la Influenza A/efectos de los fármacos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Proteínas de la Matriz Viral/antagonistas & inhibidores
12.
PLoS One ; 7(1): e29579, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253740

RESUMEN

We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks--Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.


Asunto(s)
Hiperreactividad Bronquial/genética , Cromosomas de los Mamíferos/genética , Predisposición Genética a la Enfermedad , Animales , Cruzamientos Genéticos , Femenino , Escala de Lod , Masculino , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple/genética , Mapas de Interacción de Proteínas/genética , Sitios de Carácter Cuantitativo/genética
13.
Bioorg Med Chem ; 20(2): 942-8, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22178660

RESUMEN

The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein.


Asunto(s)
Aminas/síntesis química , Aminas/farmacología , Virus ADN/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Aminas/química , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacología , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/farmacología
14.
J Am Chem Soc ; 133(35): 13844-7, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21819109

RESUMEN

We describe the use of organosilanes as inhibitors and structural probes of a membrane protein, the M2 proton channel from influenza A virus. Organosilane amine inhibitors were found to be generally as potent as their carbon analogues in targeting WT A/M2 and more potent against the drug-resistant A/M2-V27A mutant. In addition, intermolecular NOESY spectra with dimethyl-substituted organosilane amine inhibitors clearly located the drug binding site at the N-terminal lumen of the A/M2 channel close to V27.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/metabolismo , Silanos/farmacología , Proteínas Virales/metabolismo , Aminas/química , Aminas/farmacología , Antivirales/química , Sitios de Unión , Farmacorresistencia Viral , Humanos , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Modelos Moleculares , Mutación , Inhibidores de la Bomba de Protones/química , Bombas de Protones/genética , Silanos/química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
15.
J Am Chem Soc ; 133(32): 12834-41, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21744829

RESUMEN

Influenza A virus M2 (A/M2) forms a homotetrameric proton selective channel in the viral membrane. It has been the drug target of antiviral drugs such as amantadine and rimantadine. However, most of the current virulent influenza A viruses carry drug-resistant mutations alongside the drug binding site, such as S31N, V27A, and L26F, etc., each of which might be dominant in a given flu season. Among these mutations, the V27A mutation was prevalent among transmissible viruses under drug selection pressure. Until now, V27A has not been successfully targeted by small molecule inhibitors, despite years of extensive medicinal chemistry research efforts and high throughput screening. Guided by molecular dynamics (MD) simulation of drug binding and the influence of drug binding on the dynamics of A/M2 from earlier experimental studies, we designed a series of potent spirane amine inhibitors targeting not only WT, but also both A/M2-27A and L26F mutants with IC(50)s similar to that seen for amantadine's inhibition of the WT channel. The potencies of these inhibitors were further demonstrated in experimental binding and plaque reduction assays. These results demonstrate the power of MD simulations to probe the mechanism of drug binding as well as the ability to guide design of inhibitors of targets that had previously appeared to be undruggable.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Farmacorresistencia Viral , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/genética , Diseño de Fármacos , Humanos , Virus de la Influenza A/genética , Simulación de Dinámica Molecular , Ensayo de Placa Viral
16.
ACS Med Chem Lett ; 2(4): 307-312, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21691418

RESUMEN

Inhibitors targeting the influenza A virus M2 (A/M2) proton channel, have lost their effectiveness due to widespread resistance. As a first step in the development of new inhibitors that address this problem, we have screened several focused collections of small molecules using two electrode voltage patch clamp assays (TEVC) on Xenopus laevis Oocyte. Diverse head groups and scaffolds of A/M2 inhibitors have been explored. It has been found that not only amine, but also hydroxyl, aminooxyl, guanidine and amidine compounds are active against the A/M2 proton channel. Moreover, the channel is able to accommodate a wide range of structural variation in the apolar scaffold. This study offers information to guide the next generation of A/M2 proton channel inhibitor design.

17.
J Med Chem ; 54(8): 2646-57, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21466220

RESUMEN

Amantadine inhibits the M2 proton channel of influenza A virus, yet its clinical use has been limited by the rapid emergence of amantadine-resistant virus strains. We have synthesized and characterized a series of polycyclic compounds designed as ring-contracted or ring-expanded analogues of amantadine. Inhibition of the wild-type (wt) M2 channel and the A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Several bisnoradamantane and noradamantane derivatives inhibited the wt ion channel. The compounds bind to a primary site delineated by Val27, Ala30, and Ser31, though ring expansion restricts the positioning in the binding site. Only the smallest analogue 8 was found to inhibit the S31N mutant ion channel. The structure-activity relationship obtained by TEV assay was confirmed by plaque reduction assays with A/H3N2 influenza virus carrying wt M2 protein.


Asunto(s)
Proteínas de la Matriz Viral/antagonistas & inhibidores , Amantadina/química , Amantadina/farmacología , Animales , Antivirales/química , Antivirales/farmacología , Línea Celular , Perros , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Técnicas de Placa-Clamp , Espectrofotometría Infrarroja , Relación Estructura-Actividad , Proteínas de la Matriz Viral/química , Ensayo de Placa Viral , Xenopus
18.
Invest Ophthalmol Vis Sci ; 52(1): 618-23, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20847113

RESUMEN

PURPOSE: Detection of light in the eye contributes both to spatial awareness (form vision) and to responses that acclimate an animal to gross changes in light (irradiance detection). This dual role means that eye disease that disrupts form vision can also adversely affect physiology and behavioral state. The purpose of this study was to investigate how inner retinal circuitry mediating rod-cone photoreceptor input contributes to functionally distinct irradiance responses and whether that might account for phenotypic diversity in retinal disease. METHODS: The sensitivity of the pupillary light reflex and negative masking (activity suppression by light) was measured in wild-type mice with intact inner retinal circuitry, Nob4 mice that lack ON-bipolar cell function, and rd1 mice that lack rods and cones and, therefore, have no input to ON or OFF bipolar cells. RESULTS: An expected increase in sensitivity to negative masking with loss of photoreceptor input in rd1 was duplicated in Nob4 mice. In contrast, sensitivity of the pupillary light reflex was more severely reduced in rd1 than in Nob4 mice. CONCLUSIONS: Absence of ON-bipolar cell-mediated rod-cone input can fully explain the phenotype of outer retina degeneration for negative masking but not for the pupillary light reflex. Therefore, inner retinal pathways mediating rod-cone input are different for negative masking and the pupillary light reflex.


Asunto(s)
Conducta Animal , Reflejo Pupilar/fisiología , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Visión Ocular/fisiología , Animales , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Actividad Motora/fisiología , Reflejo Pupilar/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Percepción Visual
19.
Biochemistry ; 49(47): 10061-71, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-20968306

RESUMEN

The influenza A/M2 protein exhibits inwardly rectifying, pH-activated proton transport that saturates at low pH. A comparison of high-resolution structures of the transmembrane domain at high and low pH suggests that pH-dependent conformational changes may facilitate proton conduction by alternately changing the accessibility of the N-terminal and C-terminal regions of the channel as a proton transits through the transmembrane domain. Here, we show that M2 functionally reconstituted in liposomes populates at least three different conformational states over a physiologically relevant pH range, with transition midpoints that are consistent with previously reported His37 pK(a) values. We then develop and test two similar, quantitative mechanistic models of proton transport, where protonation shifts the equilibrium between structural states having different proton affinities and solvent accessibilities. The models account well for a collection of experimental data sets over a wide range of pH values and voltages and require only a small number of adjustable parameters to accurately describe the data. While the kinetic models do not require any specific conformation for the protein, they nevertheless are consistent with a large body of structural information based on high-resolution nuclear magnetic resonance and crystallographic structures, optical spectroscopy, and molecular dynamics calculations.


Asunto(s)
Conformación Proteica/efectos de los fármacos , Protones , Proteínas de la Matriz Viral/química , Animales , Concentración de Iones de Hidrógeno , Virus de la Influenza A/metabolismo , Canales Iónicos/fisiología , Cinética , Liposomas , Oocitos/metabolismo , Xenopus
20.
Proc Natl Acad Sci U S A ; 107(34): 15075-80, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20689043

RESUMEN

The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2(+) and 3(+) with a pK(a) near 6. A 1.65 A resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.


Asunto(s)
Virus de la Influenza A/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Secuencia de Aminoácidos , Animales , Fenómenos Biofísicos , Cristalografía por Rayos X , Femenino , Histidina/química , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Virus de la Influenza A/genética , Canales Iónicos/genética , Transporte Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Protones , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de la Matriz Viral/genética , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA