Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37241815

RESUMEN

The emergence of multiresistant bacteria and the shortage of antibacterials in the drug pipeline creates the need to search for novel agents. Evolution drives the optimization of the structure of marine natural products to act as antibacterial agents. Polyketides are a vast and structurally diverse family of compounds that have been isolated from different marine microorganisms. Within the different polyketides, benzophenones, diphenyl ethers, anthraquinones, and xanthones have shown promising antibacterial activity. In this work, a dataset of 246 marine polyketides has been identified. In order to characterize the chemical space occupied by these marine polyketides, molecular descriptors and fingerprints were calculated. Molecular descriptors were analyzed according to the scaffold, and principal component analysis was performed to identify the relationships among the different descriptors. Generally, the identified marine polyketides are unsaturated, water-insoluble compounds. Among the different polyketides, diphenyl ethers tend to be more lipophilic and non-polar than the remaining classes. Molecular fingerprints were used to group the polyketides according to their molecular similarity into clusters. A total of 76 clusters were obtained, with a loose threshold for the Butina clustering algorithm, highlighting the large structural diversity of the marine polyketides. The large structural diversity was also evidenced by the visualization trees map assembled using the tree map (TMAP) unsupervised machine-learning method. The available antibacterial activity data were examined in terms of bacterial strains, and the activity data were used to rank the compounds according to their antibacterial potential. This potential ranking was used to identify the most promising compounds (four compounds) which can inspire the development of new structural analogs with better potency and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.


Asunto(s)
Policétidos , Xantonas , Xantonas/química , Benzofenonas/química , Antraquinonas , Éteres Fenílicos , Antibacterianos/química , Policétidos/química
2.
Curr Med Chem ; 30(22): 2480-2517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36200214

RESUMEN

Genistein (4',5,7-trihydroxyisoflavone) is a natural plant-derived phytoestrogen that can be found, for example, in soybean seeds. Genistein is present mainly in the human diet and is a common precursor in the antimicrobial phytoalexins biosynthesis and phytoanticipins in vegetables. The interest in genistein has increased due to its pharmacological effects, including anti-cancer activity, neuroprotective effects, cardiovascular protection, anti-inflammatory effects, antioxidant activity, and prevention of obesity. The most challenging issue for improving genistein is its low oral bioavailability, which has led to many animal and human pharmacokinetic studies and numerous clinical trials. Several drug delivery systems have been developed to protect and stabilize genistein to overcome the challenge of low bioavailability. This work concerns a revision of the literature reporting nano and microformulations for genistein encapsulation, including lipid nanoparticles, liposomes, tocotrienol-rich nanoemulsions, polymeric nanoparticles, dextran complexes, chitosan complexes, and Fe3O4 nanoparticles with carboxymethylated chitosan. Regarding the enormous potential of genistein, several clinical trials and marketed formulations can be found in the market.


Asunto(s)
Quitosano , Neoplasias , Animales , Humanos , Genisteína/farmacología , Genisteína/uso terapéutico , Quitosano/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Nanotecnología
3.
J Chromatogr A ; 1684: 463555, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36244235

RESUMEN

Diverse approaches have been explored as chromatographic supports for chiral stationary phases (CSPs) in liquid chromatography (LC), such as the introduction of nanoparticles, superficially porous particles, and new materials including monoliths, metal-organic frameworks, covalent-organic frameworks as well as hybrid chromatographic supports. Nevertheless, silica-based CSPs are still nowadays the most successfully and widely applied. In this review, the most relevant achievements related with chromatographic supports used for development of CSPs for LC are described. The advantages and drawbacks of the different materials used as chromatographic supports are critically discussed. Some recent examples of applications are also presented, emphasizing innovative trends in LC.


Asunto(s)
Estructuras Metalorgánicas , Dióxido de Silicio , Estereoisomerismo , Cromatografía Liquida/métodos , Dióxido de Silicio/química , Porosidad
4.
Chirality ; 34(9): 1166-1190, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35699356

RESUMEN

Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.


Asunto(s)
Quitosano , Quitina/química , Quitosano/química , Quitosano/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Estereoisomerismo
5.
ACS Med Chem Lett ; 13(2): 225-235, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178179

RESUMEN

Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit ß-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.

6.
Mar Drugs ; 20(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049913

RESUMEN

The marine environment is an important source of specialized metabolites with valuable biological activities. Xanthones are a relevant chemical class of specialized metabolites found in this environment due to their structural variety and their biological activities. In this work, a comprehensive literature review of marine xanthones reported up to now was performed. A large number of bioactive xanthone derivatives (169) were identified, and their structures, biological activities, and natural sources were described. To characterize the chemical space occupied by marine-derived xanthones, molecular descriptors were calculated. For the analysis of the molecular descriptors, the xanthone derivatives were grouped into five structural categories (simple, prenylated, O-heterocyclic, complex, and hydroxanthones) and six biological activities (antitumor, antibacterial, antidiabetic, antifungal, antiviral, and miscellaneous). Moreover, the natural product-likeness and the drug-likeness of marine xanthones were also assessed. Marine xanthone derivatives are rewarding bioactive compounds and constitute a promising starting point for the design of other novel bioactive molecules.


Asunto(s)
Xantonas/química , Animales , Organismos Acuáticos , Diseño de Fármacos , Relación Estructura-Actividad
7.
Molecules ; 26(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576948

RESUMEN

Enantioselective chromatography is one of the most used techniques for the separation and purification of enantiomers. The most important issue for a specific successful enantioseparation is the selection of the suitable chiral stationary phase (CSP). Different synthetic approaches have been applied for the preparation of CSPs, which embrace coating and immobilization methods. In addition to the classical and broadly applied coating and immobilization procedures, innovating strategies have been introduced recently. In this review, an overview of different methods for the preparation of coated and immobilized CSPs is described. Updated examples of CSPs associated with the various strategies are presented. Considering that after the preparation of a CSP its characterization is fundamental, the methods used for the characterization of all the described CSPs are emphasized.

8.
Molecules ; 26(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34443658

RESUMEN

In recent decades, fungi-derived naturally occurring quinazolines have emerged as potential drug candidates. Nevertheless, most studies are conducted for bioactivity assays, and little is known about their absorption, distribution, metabolism, and elimination (ADME) properties. To perform metabolic studies, the synthesis of the naturally occurring quinazolinone, fiscalin B (1), and its chloro derivative, 4-((1H-indol-3-yl)methyl)-8,10-dichloro-1-isobutyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (2), disclosed as an antibacterial agent, was performed in a gram scale using a microwave-assisted polycondensation reaction with 22% and 17% yields, respectively. The structure of the non-natural (+)-fiscalin B was established, for the first time, by X-ray crystallography as (1R,4S)-1, and the absolute configuration of the naturally occurring fiscalin B (-)-1 was confirmed by comparison of its calculated and experimental electronic circular dichroism (ECD) spectra as (1S,4R)-1. in vitro metabolic studies were monitored for this class of natural products for the first time by ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). The metabolic characteristics of 1 and 2 in human liver microsomes indicated hydration and hydroxylation mass changes introduced to the parent drugs.


Asunto(s)
Antibacterianos/metabolismo , Productos Biológicos/metabolismo , Metaboloma/genética , Pirazinas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Cristalografía por Rayos X , Hongos/efectos de los fármacos , Humanos , Indoles/síntesis química , Indoles/química , Indoles/metabolismo , Espectrometría de Masas , Estructura Molecular , Pirazinas/síntesis química , Pirazinas/química , Quinazolinas/síntesis química , Quinazolinas/química , Quinazolinas/metabolismo , Estereoisomerismo
9.
Antibiotics (Basel) ; 10(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069329

RESUMEN

The emergence of multidrug and extensively drug-resistant pathogenic bacteria able to resist to the action of a wide range of antibiotics is becoming a growing problem for public health. The search for new compounds with the potential to help in the reversion of bacterial resistance plays an important role in current medicinal chemistry research. Under this scope, bacterial efflux pumps are responsible for the efflux of antimicrobials, and their inhibition could reverse resistance. In this study, the multidrug resistance reversing activity of a series of xanthones was investigated. Firstly, docking studies were performed in the AcrAB-TolC efflux pump and in a homology model of the NorA pump. Then, the effects of twenty xanthone derivatives on bacterial growth were evaluated in Staphylococcus aureus 272123 and in the acrA gene-inactivated mutant Salmonella enterica serovar Typhimurium SL1344 (SE03). Their efflux pump inhibitory properties were assessed using real-time fluorimetry. Assays concerning the activity of these compounds towards the inhibition of biofilm formation and quorum sensing have also been performed. Results showed that a halogenated phenylmethanamine xanthone derivative displayed an interesting profile, as far as efflux pump inhibition and biofilm formation were concerned. To the best of our knowledge, this is the first report of xanthones as potential efflux pump inhibitors.

10.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804175

RESUMEN

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1-3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1-3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Carbazoles/síntesis química , Carbazoles/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Alcaloides/síntesis química , Alcaloides/farmacología , Línea Celular , Línea Celular Tumoral , Clausena/química , Células HCT116 , Células HT29 , Humanos , Mutación/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
12.
Molecules ; 26(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467544

RESUMEN

This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Xantonas/farmacología , Animales , Productos Biológicos/aislamiento & purificación , Química Farmacéutica , Humanos , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Xantonas/aislamiento & purificación
13.
Eur J Med Chem ; 209: 112945, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33153766

RESUMEN

Antimicrobial resistance has become a major threat to public health worldwide, as pathogenic microorganisms are finding ways to evade all known antimicrobials. Therefore, the demand for new and effective antimicrobial agents is also increasing. Natural products have always played an important role in drug discovery, either by themselves or as inspiration for synthetic compounds. The marine environment is a rich source of bioactive metabolites, and among them, tryptophan-derived alkaloids stand out for their abundance and by displaying a variety of biological activities, with antimicrobial properties being among the most significant. This review aims to reveal the potential of marine alkaloids derived from tryptophan as antimicrobial agents. Relevant examples of these compounds and their synthetic analogues reported in the last decades are presented and discussed in detail, with their mechanism of action and synthetic approaches whenever relevant. Several tryptophan-derived marine alkaloids have shown potent and promising antimicrobial activities, whether against bacteria, fungi, or virus. Synthetic approaches to many of the compounds have been developed and recent methodologies are proving to be efficient. Even though most of the studies regarding the antimicrobial activity are still preliminary, this class of compounds has proven to be worth of further investigation and may provide useful lead compounds for the development of antimicrobial agents. Overall, marine alkaloids derived from tryptophan are revealed as a valuable class of antimicrobials and molecular modifications in order to reduce the toxicity of these compounds and additional studies regarding their mechanism of action are interesting topics to explore in the future.


Asunto(s)
Alcaloides/química , Antiinfecciosos/química , Organismos Acuáticos/química , Productos Biológicos/química , Mezclas Complejas/química , Triptófano/química , Alcaloides/farmacología , Animales , Antiinfecciosos/farmacología , Productos Biológicos/farmacología , Carbolinas/química , Mezclas Complejas/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Indoles/química , Quinolinas/química , Relación Estructura-Actividad
14.
Eur J Med Chem ; 210: 113085, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310284

RESUMEN

BACKGROUND: Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Xantenos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Bacterias/efectos de los fármacos , Química Farmacéutica , Hongos/efectos de los fármacos , Humanos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Xantenos/síntesis química , Xantenos/química
15.
Mar Drugs ; 18(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992876

RESUMEN

Marine biofouling represents a global economic and ecological challenge and few eco-friendly antifouling agents are available. The aim of this work was to establish the proof of concept that a recently synthesized nature-inspired compound (gallic acid persulfate, GAP) can act as an eco-friendly and effective antifoulant when immobilized in coatings through a non-release strategy, promoting a long-lasting antifouling effect. The synthesis of GAP was optimized to provide quantitative yields. GAP water solubility was assessed, showing values higher than 1000 mg/mL. GAP was found to be stable in sterilized natural seawater with a half-life (DT50) of 7 months. GAP was immobilized into several commercial coatings, exhibiting high compatibility with different polymeric matrices. Leaching assays of polydimethylsiloxane and polyurethane-based marine coatings containing GAP confirmed that the chemical immobilization of GAP was successful, since releases up to fivefold lower than the conventional releasing systems of polyurethane-based marine coatings were observed. Furthermore, coatings containing immobilized GAP exhibited the most auspicious anti-settlement effect against Mytilus galloprovincialis larvae for the maximum exposure period (40 h) in laboratory trials. Overall, GAP promises to be an agent capable of improving the antifouling activity of several commercial marine coatings with desirable environmental properties.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Ácido Gálico/química , Polímeros/química , Animales , Dimetilpolisiloxanos/química , Semivida , Mytilus/crecimiento & desarrollo , Poliuretanos/química , Agua de Mar , Solubilidad , Sulfatos/química , Factores de Tiempo
16.
Molecules ; 25(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560201

RESUMEN

Antioxidants have long been used in the cosmetic industry to prevent skin photoaging, which is mediated by oxidative stress, making the search for new antioxidant compounds highly desirable in this field. Naturally occurring xanthones are polyphenolic compounds that can be found in microorganisms, fungi, lichens, and some higher plants. This class of polyphenols has a privileged scaffold that grants them several biological activities. We have previously identified simple oxygenated xanthones as promising antioxidants and disclosed as hit, 1,2-dihydroxyxanthone (1). Herein, we synthesized and studied the potential of xanthones with different polyoxygenated patterns as skin antiphotoaging ingredients. In the DPPH antioxidant assay, two newly synthesized derivatives showed IC50 values in the same range as ascorbic acid. The synthesized xanthones were discovered to be excellent tyrosinase inhibitors and weak to moderate collagenase and elastase inhibitors but no activity was revealed against hyaluronidase. Their metal-chelating effect (FeCl3 and CuCl2) as well as their stability at different pH values were characterized to understand their potential to be used as future cosmetic active agents. Among the synthesized polyoxygenated xanthones, 1,2-dihydroxyxanthone (1) was reinforced as the most promising, exhibiting a dual ability to protect the skin against UV damage by combining antioxidant/metal-chelating properties with UV-filter capacity and revealed to be more stable in the pH range that is close to the pH of the skin. Lastly, the phototoxicity of 1,2-dihydroxyxanthone (1) was evaluated in a human keratinocyte cell line and no phototoxicity was observed in the concentration range tested.


Asunto(s)
Antioxidantes , Queratinocitos/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Piel/metabolismo , Protectores Solares , Xantonas , Antioxidantes/efectos adversos , Antioxidantes/química , Antioxidantes/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Queratinocitos/patología , Piel/patología , Envejecimiento de la Piel/efectos de la radiación , Protectores Solares/efectos adversos , Protectores Solares/química , Protectores Solares/farmacología , Rayos Ultravioleta/efectos adversos , Xantonas/efectos adversos , Xantonas/química , Xantonas/farmacología
17.
Molecules ; 25(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455828

RESUMEN

A series of thirteen xanthones 3-15 was prepared based on substitutional (appendage) diversity reactions. The series was structurally characterized based on their spectral data and HRMS, and the structures of xanthone derivatives 1, 7, and 8 were determined by single-crystal X-ray diffraction. This series, along with an in-house series of aminated xanthones 16-33, was tested for in-vitro antimicrobial activity against seven bacterial (including two multidrug-resistant) strains and five fungal strains. 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8) exhibited antibacterial activity against all tested strains. In addition, 3,4-dihydroxy-1-methyl-9H-xanthen-9-one (3) revealed a potent inhibitory effect on the growth of dermatophyte clinical strains (T. rubrum FF5, M. canis FF1 and E. floccosum FF9), with a MIC of 16 µg/mL for all the tested strains. Compounds 3 and 26 showed a potent inhibitory effect on two C. albicans virulence factors: germ tube and biofilm formation.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Difracción de Rayos X , Xantonas/síntesis química , Xantonas/farmacología
18.
Molecules ; 25(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326326

RESUMEN

Enantiomeric separation is a key step in the development of a new chiral drug. Preparative liquid chromatography (LC) continues to be the technique of choice either during the drug discovery process, to achieve a few milligrams, or to a scale-up during the clinical trial, needing kilograms of material. However, in the last few years, instrumental and technical developments allowed an exponential increase of preparative enantioseparation using other techniques. Besides LC, supercritical fluid chromatography (SFC) and counter-current chromatography (CCC) have aroused interest for preparative chiral separation. This overview will highlight the importance to scale-up chiral separations in Medicinal Chemistry, especially in the early stages of the pipeline of drugs discovery and development. Few examples within different methodologies will be selected, emphasizing the trends in chiral preparative separation. The advantages and drawbacks will be critically discussed.


Asunto(s)
Química Farmacéutica/métodos , Desarrollo de Medicamentos/métodos , Cromatografía Liquida/métodos , Humanos
19.
ChemMedChem ; 15(9): 749-755, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162478

RESUMEN

Natural products have always been an important source of new hits and leads in drug discovery, with the marine environment being regarded as a significant source of novel and exquisite bioactive compounds. Yicathins B and C are two marine-derived xanthones that have shown antibacterial and antifungal activity. Herein, the total synthesis of these yicathins and six novel analogues is reported for the first time. As marine natural products tend to have very lipophilic scaffolds, the lipophilicity of yicathins and their analogues was evaluated in the classical octanol/water system and a biomimetic model-based system. As the xanthonic nucleus is a "privileged structure", other biological activities were evaluated, namely antitumor and anti-inflammatory activities. An interesting anti-inflammatory activity was identified for yicathin analogues that paves the way for the design of dual activity (anti-infective and anti-inflammatory) marine-inspired xanthone derivatives.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Macrófagos/efectos de los fármacos , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Estructura Molecular , Estereoisomerismo
20.
RSC Adv ; 10(52): 31187-31204, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35520644

RESUMEN

Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for novel antimicrobials is urgent. Inspired by marine alkaloids, a series of indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones was prepared using a one-pot microwave-assisted multicomponent polycondensation of amino acids. The compounds were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains. Compounds 26 and 27 were the most effective against Staphylococcus aureus ATCC 29213 reference strain with MIC values of 4 µg mL-1, and a methicillin-resistant Staphylococcus aureus (MRSA) isolate with MIC values of 8 µg mL-1. It was possible to infer that enantiomer (-)-26 was responsible for the antibacterial activity (MIC 4 µg mL-1) while (+)-26 had no activity. Furthermore, compound (-)-26 was able to impair S. aureus biofilm production and no significant cytotoxicity towards differentiated and non-differentiated SH-SY5Y cells was observed. Compounds 26, 28, and 29 showed a weak antifungal activity against Trichophyton rubrum clinical isolate with MIC 128 µg mL-1 and presented a synergistic effect with fluconazole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...