Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microb Ecol ; 85(3): 1045-1055, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36708392

RESUMEN

Rupestrian grasslands are vegetation complexes of the Cerrado biome (Brazilian savanna), exhibiting simultaneously great biodiversity and important open-pit mining areas. There is a strong demand for the conservation of remaining areas and restoration of degraded. This study evaluated, using next-generation sequencing, the diversity and ecological aspects of soil fungal communities in ferruginous rupestrian grassland areas preserved and degraded by bauxite mining in Brazil. In the preserved and degraded area, respectively, 565 and 478 amplicon sequence variants (ASVs) were detected. Basidiomycota and Ascomycota comprised nearly 72% of the DNA, but Ascomycota showed greater abundance than Basidiomycota in the degraded area (64% and 10%, respectively). In the preserved area, taxa of different hierarchical levels (Agaromycetes, Agaricales, Mortierelaceae, and Mortierella) associated with symbiosis and decomposition were predominant. However, taxa that colonize environments under extreme conditions and pathogens (Dothideomycetes, Pleoporales, Pleosporaceae, and Curvularia) prevailed in the degraded area. The degradation reduced the diversity, and modified the composition of taxa and predominant ecological functions in the community. The lack of fungi that facilitate plant establishment and development in the degraded area suggests the importance of seeking the restoration of this community to ensure the success of the ecological restoration of the environment. The topsoil of preserved area can be a source of inocula of several groups of fungi important for the restoration process but which occur in low abundance or are absent in the degraded area.


Asunto(s)
Micobioma , Pradera , Suelo , Ecosistema , Biodiversidad , Hongos/genética , Microbiología del Suelo
2.
Amino Acids ; 54(11): 1477-1489, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35864259

RESUMEN

Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.


Asunto(s)
Lipopéptidos , Paenibacillus , Lipopéptidos/farmacología , Lipopéptidos/química , Staphylococcus aureus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo
3.
Extremophiles ; 26(2): 16, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35499659

RESUMEN

We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarcoding through high-throughput sequencing (HTS). Sequences obtained were assigned to 146 amplicon sequence variants (ASVs) primarily representing unknown fungi, followed by the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota. The most abundant taxa were assigned to Fungal sp., Pseudeurotium hygrophilum, Rozellomycota sp. 1, Pseudeurotiaceae sp. 1 and Chytridiomycota sp. 1. The majority of the DNA reads, representing 40 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases consulted and/or be previously undescribed fungi. Different sections of the core were characterized by high sequence diversity, richness and moderate ecological dominance indices. The assigned diversity was dominated by cosmopolitan cold-adapted fungi, including known saprotrophic, plant and animal pathogenic and symbiotic taxa. Despite the overall dominance of Ascomycota and Basidiomycota and psychrophilic Mortierellomycota, members of the cryptic phyla Rozellomycota and Chytridiomycota were also detected in abundance. As Boeckella Lake may cease to exist in approaching decades due the effects of local climatic changes, it also an important location for the study of the impacts of these changes on Antarctic microbial diversity.


Asunto(s)
Cambio Climático , Lagos , Animales , Regiones Antárticas , Bahías , Biodiversidad , Hongos/genética
4.
Mol Biol Rep ; 49(1): 179-188, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34686990

RESUMEN

BACKGROUND: Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS: Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS: The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.


Asunto(s)
Chlorophyta/clasificación , Código de Barras del ADN Taxonómico/métodos , ADN Intergénico/genética , ADN Ribosómico/genética , Regiones Antárticas , Chlorophyta/genética , ADN de Algas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos , Filogenia , Análisis de Secuencia de ADN
5.
Microb Ecol ; 83(3): 647-657, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34228196

RESUMEN

We assessed fungal diversity present in glacial from the Antarctic Peninsula using DNA metabarcoding through high-throughput sequencing (HTS). We detected a total of 353,879 fungal DNA reads, representing 94 genera and 184 taxa, in glacial ice fragments obtained from seven sites in the north-west Antarctic Peninsula and South Shetland Islands. The phylum Ascomycota dominated the sequence diversity, followed by Basidiomycota and Mortierellomycota. Penicillium sp., Cladosporium sp., Penicillium atrovenetum, Epicoccum nigrum, Pseudogymnoascus sp. 1, Pseudogymnoascus sp. 2, Phaeosphaeriaceae sp. and Xylaria grammica were the most dominant taxa, respectively. However, the majority of the fungal diversity comprised taxa of rare and intermediate relative abundance, predominately known mesophilic fungi. High indices of diversity and richness were calculated, along with moderate index of dominance, which varied among the different sampling sites. Only 26 (14%) of the total fungal taxa detected were present at all sampling sites. The identified diversity was dominated by saprophytic taxa, followed by known plant and animal pathogens and a low number of symbiotic fungi. Our data suggest that Antarctic glacial ice may represent a hotspot of previously unreported fungal diversity; however, further studies are required to integrate HTS and culture approaches to confirm viability of the taxa detected.


Asunto(s)
Basidiomycota , Código de Barras del ADN Taxonómico , Animales , Regiones Antárticas , Basidiomycota/genética , ADN de Hongos/genética , Hongos/genética , Hielo
6.
Microb Ecol ; 83(1): 58-67, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33733305

RESUMEN

We assess the fungal diversity present in permafrost from different islands in the South Shetland Islands archipelago, maritime Antarctic, using next-generation sequencing (NGS). We detected 1,003,637 fungal DNA reads representing, in rank abundance order, the phyla Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, Rozellomycota, Mucoromycota, Calcarisporiellomycota and Zoopagomycota. Ten taxa were dominant these being, in order of abundance, Pseudogymnoascus appendiculatus, Penicillium sp., Pseudogymnoascus roseus, Penicillium herquei, Curvularia lunata, Leotiomycetes sp., Mortierella sp. 1, Mortierella fimbricystis, Fungal sp. 1 and Fungal sp. 2. A further 38 taxa had intermediate abundance and 345 were classified as rare. The total fungal community detected in the permafrost showed high indices of diversity, richness and dominance, although these varied between the sampling locations. The use of a metabarcoding approach revealed the presence of DNA of a complex fungal assemblage in the permafrost of the South Shetland Islands including taxa with a range of ecological functions among which were multiple animal, human and plant pathogenic fungi. Further studies are required to determine whether the taxa identified are present in the form of viable cells or propagules and which might be released from melting permafrost to other Antarctic habitats and potentially dispersed more widely.


Asunto(s)
Hielos Perennes , Animales , Regiones Antárticas , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , Hongos/genética , Humanos , Islas
7.
Extremophiles ; 25(5-6): 471-481, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34480232

RESUMEN

We evaluated fungal and bacterial diversity in an established moss carpet on King George Island, Antarctica, affected by 'fairy ring' disease using metabarcoding. A total of 127 fungal and 706 bacterial taxa were assigned. Ascomycota dominated the fungal assemblages, followed by Basidiomycota, Rozellomycota, Chytridiomycota, Mortierellomycota and Monoblepharomycota. The fungal community displayed high indices of diversity, richness and dominance, which increased from healthy through infected to dead moss samples. A range of fungal taxa were more abundant in dead rather than healthy or fairy ring moss samples. Bacterial diversity and richness were greatest in healthy moss and least within the infected fairy ring. The dominant prokaryotic phyla were Actinobacteriota, Proteobacteria, Bacteroidota and Cyanobacteria. Cyanophyceae sp., whilst consistently dominant, were less abundant in fairy ring samples. Our data confirmed the presence and abundance of a range of plant pathogenic fungi, supporting the hypothesis that the disease is linked with multiple fungal taxa. Further studies are required to characterise the interactions between plant pathogenic fungi and their host Antarctic mosses. Monitoring the dynamics of mutualist, phytopathogenic and decomposer microorganisms associated with moss carpets may provide bioindicators of moss health.


Asunto(s)
Ascomicetos , Basidiomycota , Briófitas , Micobioma , Regiones Antárticas , Hongos/genética
8.
Microbiol Resour Announc ; 10(32): e0049021, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382826

RESUMEN

We report the genome sequence of a polyethylene-degrading bacterial strain identified as Stenotrophomonas maltophilia strain PE591, which was isolated from plastic debris found in savanna soil. The genome was assembled in 16 scaffolds with a length of 4,751,236 bp, a GC content of 66.5%, and 4,432 predicted genes.

9.
Extremophiles ; 25(3): 257-265, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33837855

RESUMEN

We assessed the diversity of fungal DNA present in sediments of three lakes on Vega Island, north-east Antarctic Peninsula using metabarcoding through high-throughput sequencing (HTS). A total of 640,902 fungal DNA reads were detected, which were assigned to 224 taxa of the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota, in rank order of abundance. The most abundant genera were Pseudogymnoascus, Penicillium and Mortierella. However, a majority (423,508, 66%) of the reads, representing by 43 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases used or be new or previously unreported taxa present in Antarctic lakes. The three lakes were characterized by high sequence diversity, richness, and moderate dominance indices. The ASVs were dominated by psychrotolerant and cosmopolitan cold-adapted Ascomycota, Basidiomycota and Mortierellomycota commonly reported in Antarctic environments. However, other taxa detected included unidentified members of Rozellomycota and Chytridiomycota species not previously reported in Antarctic lakes. The assigned diversity was composed mainly of taxa recognized as decomposers and pathogens of plants and invertebrates.


Asunto(s)
Código de Barras del ADN Taxonómico , Lagos , Regiones Antárticas , Biodiversidad , ADN de Hongos/genética , Hongos/genética , Islas
10.
Extremophiles ; 25(2): 193-202, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33651232

RESUMEN

We evaluated the fungal diversity associated with carbonate veins and two types of salt encrustation in rocks in a polar desert region of continental Antarctica using DNA a metabarcoding approach. We detected 262,268 reads grouped into 517 amplicon sequence variants (ASVs) assigned to the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Fourteen ASVs belonging to the genera Trichosporon, Mortierella, Penicillium, Aspergillus, Cladosporium, Coprinellus, Pleurotus and Pseudogymnoascus were assessed to be dominant taxa. The fungal communities of the three habitats sampled displayed high diversity indices when compared with other habitats of Antarctica, although differing in detail, with the highest diversity indices in the gypsum crust type 2. Only 48 of the 517 ASVs (9.28%) were detected in all three habitats, including dominant, intermediate and minor components. In contrast with previous studies of fungal communities living in the ultra-extreme conditions of continental Antarctica, application of metabarcoding revealed the DNA of a rich and complex resident fungal community. The ASVs detected included fungi with different ecological roles, with xerophilic, human- and animal-associated, phytopathogenic, saprotrophic, mutualistic, psychrotolerant and cosmopolitan taxa. This sequence diversity may be the result of deposition of fungal propagules over time driven by air currents, precipitation or human activities in the region.


Asunto(s)
Código de Barras del ADN Taxonómico , Micobioma , Animales , Regiones Antárticas , ADN , ADN de Hongos/genética , Ecosistema , Hongos/genética , Humanos
11.
Microb Ecol ; 82(1): 157-164, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33404819

RESUMEN

We assessed fungal diversity in deep-sea sediments obtained from different depths in the Southern Ocean using the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA by metabarcoding through high-throughput sequencing (HTS). We detected 655,991 DNA reads representing 263 fungal amplicon sequence variants (ASVs), dominated by Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Chytridiomycota and Rozellomycota, confirming that deep-sea sediments can represent a hotspot of fungal diversity in Antarctica. The community diversity detected included 17 dominant fungal ASVs, 62 intermediate and 213 rare. The dominant fungi included taxa of Mortierella, Penicillium, Cladosporium, Pseudogymnoascus, Phaeosphaeria and Torula. Despite the extreme conditions of the Southern Ocean benthos, the total fungal community detected in these marine sediments displayed high indices of diversity and richness, and moderate dominance, which varied between the different depths sampled. The highest diversity indices were obtained in sediments from 550 m and 250 m depths. Only 49 ASVs (18.63%) were detected at all the depths sampled, while 16 ASVs were detected only in the deepest sediment sampled at 1463 m. Based on sequence identities, the fungal community included some globally distributed taxa, primarily recorded otherwise from terrestrial environments, suggesting transport from these to deep marine sediments. The assigned taxa included symbionts, decomposers and plant-, animal- and human-pathogenic fungi, suggesting that deep-sea sediments host a complex fungal diversity, although metabarcoding does not itself confirm that living or viable organisms are present.


Asunto(s)
Ascomicetos , Micobioma , Animales , Regiones Antárticas , ADN , Código de Barras del ADN Taxonómico , Hongos/genética , Sedimentos Geológicos , Humanos
12.
Microb Ecol ; 81(1): 169-179, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32617619

RESUMEN

Metagenomic studies revealed the prevalence of Acidobacteria in soils, but the physiological and ecological reasons for their success are not well understood. Many Acidobacteria exhibit carotenoid-related pigments, which may be involved in their tolerance of environmental stress. The aim of this work was to investigate the role of the orange pigments produced by Acidobacteria strain AB23 isolated from a savannah-like soil and to identify putative carotenoid genes in Acidobacteria genomes. Phylogenetic analysis revealed that strain AB23 belongs to the Occallatibacter genus from the class Acidobacteriia (subdivision 1). Strain AB23 produced carotenoids in the presence of light and vitamins; however, the growth rate and biomass decreased when cells were exposed to light. The presence of carotenoids resulted in tolerance to hydrogen peroxide. Comparative genomics revealed that all members of Acidobacteriia with available genomes possess the complete gene cluster for phytoene production. Some Acidobacteriia members have an additional gene cluster that may be involved in the production of colored carotenoids. Both colored and colorless carotenoids are involved in tolerance to oxidative stress. These results show that the presence of carotenoid genes is widespread among Acidobacteriia. Light and atmospheric oxygen stimulate carotenoid synthesis, but there are other natural sources of oxidative stress in soils. Tolerance to environmental oxidative stress provided by carotenoids may offer a competitive advantage for Acidobacteria in soils.


Asunto(s)
Acidobacteria/genética , Acidobacteria/metabolismo , Farmacorresistencia Bacteriana/genética , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/fisiología , Acidobacteria/efectos de los fármacos , Acidobacteria/aislamiento & purificación , Carotenoides/metabolismo , ADN Bacteriano/genética , Genoma Bacteriano/genética , Familia de Multigenes/genética , Suelo/química , Microbiología del Suelo
13.
Microb Ecol ; 82(1): 165-172, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33161522

RESUMEN

We assessed fungal diversity present in air samples obtained from King George Island, Antarctica, using DNA metabarcoding through high-throughput sequencing. We detected 186 fungal amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, and Chytridiomycota. Fungi sp. 1, Agaricomycetes sp. 1, Mortierella parvispora, Mortierella sp. 2, Penicillium sp., Pseudogymnoascus roseus, Microdochium lycopodinum, Mortierella gamsii, Arrhenia sp., Cladosporium sp., Mortierella fimbricystis, Moniliella pollinis, Omphalina sp., Mortierella antarctica, and Pseudogymnoascus appendiculatus were the most dominant ASVs. In addition, several ASVs could only be identified at higher taxonomic levels and may represent previously unknown fungi and/or new records for Antarctica. The fungi detected in the air displayed high indices of diversity, richness, and dominance. The airborne fungal diversity included saprophytic, mutualistic, and plant and animal opportunistic pathogenic taxa. The diversity of taxa detected reinforces the hypothesis that the Antarctic airspora includes fungal propagules of both intra- and inter-continental origin. If regional Antarctic environmental conditions ameliorate further in concert with climate warming, these fungi might be able to reactivate and colonize different Antarctic ecosystems, with as yet unknown consequences for ecosystem function in Antarctica. Further aeromycological studies are necessary to understand how and from where these fungi arrive and move within Antarctica and if environmental changes will encourage the development of non-native fungal species in Antarctica.


Asunto(s)
Ascomicetos , Ecosistema , Animales , Regiones Antárticas , Basidiomycota , Código de Barras del ADN Taxonómico , Hongos/genética , Mortierella
14.
Sci Rep ; 10(1): 21793, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311553

RESUMEN

We assessed fungal diversity present in air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). A total of 740 m3 of air were pumped through a 0.22 µm membrane. Snow obtained shortly after deposition was kept at room temperature and yielded 3.760 L of water, which was filtered using Sterivex membranes of 0.22 µm mesh size. The total DNA present was extracted and sequenced. We detected 171 fungal amplicon sequence variants (ASVs), 70 from the air and 142 from the snow. They were dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Pseudogymnoascus, Cladosporium, Mortierella and Penicillium sp. were the most dominant ASVs detected in the air in rank order. In snow, Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, Lecidea, Malassezia, Hanseniaspora, Austroplaca, Mortierella, Rhodotorula, Penicillium, Thelebolus, Aspergillus, Poaceicola, Glarea and Lecanora were the dominant ASVs present. In general, the two fungal assemblages displayed high diversity, richness, and dominance indices, with the assemblage found in snow having the highest diversity indices. Of the total fungal ASVs detected, 29 were only present in the air sample and 101 in the snow sample, with only 41 present in both samples; however, when only the dominant taxa from both samples were compared none occurred only in the air and, among the rare portion, 26 taxa occurred in both air and snow. Application of HTS revealed the presence of a more diverse fungal community in the air and snow of Livingston Island in comparison with studies using traditional isolation methods. The assemblages were dominated by cold-adapted and cosmopolitan fungal taxa, including members of the genera Pseudogymnoascus, Malassezia and Rhodotorula, which include some taxa reported as opportunistic. Our results support the hypothesis that the presence of microbiota in the airspora indicates the possibility of dispersal around Antarctica in the air column. However, further aeromycology studies are required to understand the dynamics of fungal dispersal within and beyond Antarctica.


Asunto(s)
Código de Barras del ADN Taxonómico , Hongos/clasificación , Hongos/genética , Micobioma , Regiones Antárticas , Islas
15.
Sci Rep ; 10(1): 21986, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319803

RESUMEN

We assessed soil fungal diversity at two sites on Deception Island, South Shetland Islands, Antarctica using DNA metabarcoding analysis. The first site was a relatively undisturbed area, and the second was much more heavily impacted by research and tourism. We detected 346 fungal amplicon sequence variants dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Chytridiomycota. We also detected taxa belonging to the rare phyla Mucoromycota and Rozellomycota, which have been difficult to detect in Antarctica by traditional isolation methods. Cladosporium sp., Pseudogymnoascus roseus, Leotiomycetes sp. 2, Penicillium sp., Mortierella sp. 1, Mortierella sp. 2, Pseudogymnoascus appendiculatus and Pseudogymnoascus sp. were the most dominant fungi. In addition, 440,153 of the total of 1,214,875 reads detected could be classified only at the level of Fungi. In both sampling areas the DNA of opportunistic, phytopathogenic and symbiotic fungi were detected, which might have been introduced by human activities, transported by birds or wind, and/or represent resident fungi not previously reported from Antarctica. Further long-term studies are required to elucidate how biological colonization in the island may be affected by climatic changes and/or other anthropogenic influences.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Hongos/clasificación , Hongos/genética , Islas , Microbiología del Suelo , Regiones Antárticas , Comunicaciones por Satélite
16.
Microorganisms ; 8(10)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992494

RESUMEN

Eusocial animals, such as the termites, often build a nest-like structure called a mound that provides shelter with stable internal conditions and protection against predators. Termites are important components of the Brazilian Cerrado biota. This study aimed to investigate the bacterial community composition and diversity of the Syntermes wheeleri termite-mound soil using culture-independent approaches. We considered the vertical profile by comparing two different mound depths (mound surface and 60 cm) and seasonality with samplings during the rainy and dry seasons. We compared the mound soil microbiota to the adjacent soil without the influence of the mound to test the hypothesis that the Cerrado soil bacterial community was more diverse and more susceptible to seasonality than the mound soil microbiota. The results support the hypothesis that the Cerrado soil bacterial community is more diverse than the mound soil and also has a higher variability among seasons. The number of observed OTUs (Operational Taxonomic Units) was used to express bacterial richness, and it indicates that soil moisture has an effect on the community distribution and richness of the Cerrado samples in comparison to mound samples, which remain stable across seasons. This could be a consequence of the protective role of the mound for the termite colony. The overall community taxonomic profile was similar between soil samples, especially when compared to the taxonomic composition of the Syntermes wheeleri termite's gut, which might be explained by the different characteristics and functionality between the soil and the gut microbial community.

17.
FEMS Microbiol Lett ; 367(18)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32897365

RESUMEN

The presence of genes for glycosyl hydrolases in many Acidobacteria genomes indicates an important role in the degradation of plant cell wall material. Acidobacteria bacterium AB60 was obtained from Cerrado oligotrophic soil in Brazil, where this phylum is abundant. The 16S rRNA gene analyses showed that AB60 was closely related to the genera Occallatibacter and Telmatobacter. However, AB60 grew on xylan as carbon source, which was not observed in Occallatibacter species; but growth was not detected on medium containing carboxymethyl cellulose, as observed in Telmatobacter. Nevertheless, the genome analysis of AB60 revealed genes for the enzymes involved in cellulose as well as xylan degradation. In addition to enzymes involved in xylan degradation, α-l-rhamnosidase was detected in the cultures of AB60. Functional screening of a small-insert genomic library did not identify any clones capable of carboxymethyl cellulose degradation, but open reading frames coding α-l-arabinofuranosidase and α-l-rhamnosidase were present in clones showing xylan degradation halos. Both enzymes act on the lateral chains of heteropolymers such as pectin and some hemicelluloses. These results indicate that the hydrolysis of α-linked sugars may offer a metabolic niche for slow-growing Acidobacteria, allowing them to co-exist with other plant-degrading microbes that hydrolyze ß-linked sugars from cellulose or hemicellulose backbones.


Asunto(s)
Acidobacteria/metabolismo , Microbiología del Suelo , Xilanos/metabolismo , Acidobacteria/clasificación , Acidobacteria/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brasil , Celulosa/metabolismo , Genoma Bacteriano/genética , Hidrólisis , Pectinas/metabolismo , Filogenia , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...