Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 708: 133863, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31771845

RESUMEN

Attenuation of organic compounds in sewage treatment plants (STPs) is affected by a complex interplay between chemical (e.g. ionization, hydrolysis), physical (e.g. sorption, volatilization), and biological (e.g. biodegradation, microbial acclimation) processes. These effects should be accounted for individually, in order to develop predictive cheminformatics tools for STPs. Using measured data from 70 STPs in the Netherlands for 69 chemicals (pharmaceuticals, herbicides, etc.), we highlighted the influences of 1) chemical ionization, 2) sorption to sludge, and 3) acclimation of the microbial consortia on the primary removal of chemicals. We used semi-empirical corrections for each of these influences to deduce biodegradation rate constants upon which quantitative structure-biodegradation relationships (QSBRs) were developed. As shown by a global QSBR, biodegradation in STPs generally relates to structural complexity, size, energetics, and charge distribution. Statistics of the global QSBR were reasonable, being R2training=0.69 (training set of 51 compounds) and R2validation=0.50 (validation set of 18 compounds). Class-specific QSBRs utilized electronic properties potentially relating to rate-limiting enzymatic steps. For class-specific QSBRs, values of R2 of in between 0.7 and 0.8 were obtained. With caution, environmental risk assessment methodologies may apply these models to estimate biodegradation rates for 'data-poor' compounds. The approach also highlights 'meta data' on STP operational parameters needed to develop QSBRs of better predictability in the future.


Asunto(s)
Aguas Residuales , Biodegradación Ambiental , Consorcios Microbianos , Países Bajos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua
2.
ALTEX ; 36(3): 505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31329253

RESUMEN

In this manuscript, which appeared in ALTEX 35 , 235-253 ( doi:10.14573/altex.1712182 ), the Acknowledgements should read: This work was supported by the Land BW, the Doerenkamp-Zbinden Foundation, the DFG (RTG1331, KoRS-CB), the BMBF (NeuriTox), and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

3.
ALTEX ; 35(2): 235-253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423527

RESUMEN

The (developmental) neurotoxicity hazard is still unknown for most chemicals. Establishing a test battery covering most of the relevant adverse outcome pathways may close this gap, without requiring a huge animal experimentation program. Ideally, each of the assays would cover multiple mechanisms of toxicity. One candidate test is the human LUHMES cell-based NeuriTox test. To evaluate its readiness for larger-scale testing, a proof of concept library assembled by the U.S. National Toxicology Program (NTP) was screened. Of the 75 unique compounds, seven were defined as specifically neurotoxic after the hit-confirmation phase and additional ten compounds were generally cytotoxic within the concentration range of up to 20 micromolar. As complementary approach, the library was screened in the PeriTox test, which identifies toxicants affecting the human peripheral nervous system. Of the eight PeriTox hits, five were similar to the NeuriTox hits: rotenone, colchicine, diethylstilbestrol, berberine chloride, and valinomycin. The unique NeuriTox hit, methyl-phenylpyridinium (MPP+) is known from in vivo studies to affect only dopaminergic neurons (which LUHMES cells are). Conversely, the known peripheral neurotoxicant acrylamide was picked up in the PeriTox, but not in the NeuriTox assay. All of the five common hits had also been identified in the published neural crest migration (cMINC) assay, while none of them emerged as cardiotoxicant in a previous screen using the same library. These comparative data suggest that complementary in vitro tests can pick up a broad range of toxicants, and that multiple test results might help to predict organ specificity patterns.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Toxicidad/métodos , Células Cultivadas , Humanos
4.
Environ Sci Process Impacts ; 20(1): 157-170, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29192704

RESUMEN

Microbial biomass and acclimation can affect the removal of organic chemicals in natural surface waters. In order to account for these effects and develop more robust models for biodegradation, we have compiled and curated removal data for un-acclimated (pristine) surface waters on which we developed quantitative structure-activity relationships (QSARs). Global analysis of the very heterogeneous dataset including neutral, anionic, cationic and zwitterionic chemicals (N = 233) using a random forest algorithm showed that useful predictions were possible (Qext2 = 0.4-0.5) though relatively large standard errors were associated (SDEP ∼0.7). Classification of the chemicals based on speciation state and metabolic pathway showed that biodegradation is influenced by the two, and that the dependence of biodegradation on chemical characteristics is non-linear. Class-specific QSAR analysis indicated that shape and charge distribution determine the biodegradation of neutral chemicals (R2 ∼ 0.6), e.g. through membrane permeation or binding to P450 enzymes, whereas the average biodegradation of charged chemicals is 1 to 2 orders of magnitude lower, for which degradation depends more directly on cellular uptake (R2 ∼ 0.6). Further analysis showed that specific chemical classes such as peptides and organic halogens are relatively less biodegradable in pristine surface waters, resulting in the need for the microbial consortia to acclimate. Additional literature data was used to verify an acclimation model (based on Monod-type kinetics) capable of extrapolating QSAR predictions to acclimating conditions such as in water treatment, downstream lakes and large rivers under µg L-1 to mg L-1 concentrations. The framework developed, despite being based on multiple assumptions, is promising and needs further validation using experimentation with more standardised and homogenised conditions as well as adequate characterization of the inoculum used.


Asunto(s)
Aclimatación , Agua Dulce/química , Consorcios Microbianos/fisiología , Modelos Teóricos , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/química , Aerobiosis , Biodegradación Ambiental , Biomasa , Cinética , Compuestos Orgánicos/análisis , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua/análisis
5.
Toxicol Sci ; 162(1): 287-300, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155963

RESUMEN

Over the past decades, pharmaceutical companies have conducted a large number of high-quality in vivo repeat-dose toxicity (RDT) studies for regulatory purposes. As part of the eTOX project, a high number of these studies have been compiled and integrated into a database. This valuable resource can be queried directly, but it can be further exploited to build predictive models. As the studies were originally conducted to investigate the properties of individual compounds, the experimental conditions across the studies are highly heterogeneous. Consequently, the original data required normalization/standardization, filtering, categorization and integration to make possible any data analysis (such as building predictive models). Additionally, the primary objectives of the RDT studies were to identify toxicological findings, most of which do not directly translate to in vivo endpoints. This article describes a method to extract datasets containing comparable toxicological properties for a series of compounds amenable for building predictive models. The proposed strategy starts with the normalization of the terms used within the original reports. Then, comparable datasets are extracted from the database by applying filters based on the experimental conditions. Finally, carefully selected profiles of toxicological findings are mapped to endpoints of interest, generating QSAR-like tables. In this work, we describe in detail the strategy and tools used for carrying out these transformations and illustrate its application in a data sample extracted from the eTOX database. The suitability of the resulting tables for developing hazard-predicting models was investigated by building proof-of-concept models for in vivo liver endpoints.


Asunto(s)
Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Determinación de Punto Final , Modelos Teóricos , Pruebas de Toxicidad/métodos , Minería de Datos , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Predicción , Difusión de la Información , Medición de Riesgo , Pruebas de Toxicidad/normas , Pruebas de Toxicidad/estadística & datos numéricos
6.
Arch Toxicol ; 91(11): 3613-3632, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28477266

RESUMEN

Many in vitro tests have been developed to screen for potential neurotoxicity. However, only few cell function-based tests have been used for comparative screening, and thus experience is scarce on how to confirm and evaluate screening hits. We addressed these questions for the neural crest cell migration test (cMINC). After an initial screen, a hit follow-up strategy was devised. A library of 75 compounds plus internal controls (NTP80-list), assembled by the National Toxicology Program of the USA (NTP) was used. It contained some known classes of (developmental) neurotoxic compounds. The primary screen yielded 23 confirmed hits, which comprised ten flame retardants, seven pesticides and six drug-like compounds. Comparison of concentration-response curves for migration and viability showed that all hits were specific. The extent to which migration was inhibited was 25-90%, and two organochlorine pesticides (DDT, heptachlor) were most efficient. In the second part of this study, (1) the cMINC assay was repeated under conditions that prevent proliferation; (2) a transwell migration assay was used as a different type of migration assay; (3) cells were traced to assess cell speed. Some toxicants had largely varying effects between assays, but each hit was confirmed in at least one additional test. This comparative study allows an estimate on how confidently the primary hits from a cell function-based screen can be considered as toxicants disturbing a key neurodevelopmental process. Testing of the NTP80-list in more assays will be highly interesting to assemble a test battery and to build prediction models for developmental toxicity.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Cresta Neural/citología , Pruebas de Toxicidad/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , DDT/toxicidad , Evaluación Preclínica de Medicamentos/métodos , Heptacloro/toxicidad , Humanos , Cresta Neural/efectos de los fármacos , Imagen de Lapso de Tiempo
7.
J Chem Theory Comput ; 11(3): 1292-307, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26579775

RESUMEN

An efficient molecular simulation methodology has been developed for the evaluation of the druggability (ligandability) of a protein. Previously proposed techniques were designed to assess the druggability of crystallographic structures and cannot be tightly coupled to molecular dynamics (MD) simulations. By contrast, the present approach, JEDI (Just Exploring Druggability at protein Interfaces), features a druggability potential made of a combination of empirical descriptors that can be collected "on-the-fly" during MD simulations. Extensive validation studies indicate that JEDI analyses discriminate druggable and nondruggable protein binding site conformations with accuracy similar to alternative methodologies, and at a fraction of the computational cost. Since the JEDI function is continuous and differentiable, the druggability potential can be used as collective variable to rapidly detect cryptic druggable binding sites in proteins with a variety of MD free energy methods. Protocols for applications to flexible docking problems are outlined.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Sitios de Unión , Descubrimiento de Drogas/métodos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...