Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Phys Chem Au ; 3(1): 119-129, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36718265

RESUMEN

Water is an integral component in electrochemistry, in the generation of the electric double layer, and in the propagation of the interfacial electric fields into the solution; however, probing the molecular-level structure of interfacial water near functioning electrode surfaces remains challenging. Due to the surface-specificity, sum-frequency-generation (SFG) spectroscopy offers an opportunity to investigate the structure of water near working electrochemical interfaces but probing the hydrogen-bonded structure of water at this buried electrode-electrolyte interface was thought to be impossible. Propagating the laser beams through the solvent leads to a large attenuation of the infrared light due to the absorption of water, and interrogating the interface by sending the laser beams through the electrode normally obscures the SFG spectra due to the large nonlinear response of conduction band electrons. Here, we show that the latter limitation is removed when the gold layer is thin. To demonstrate this, we prepared Au gradient films on CaF2 with a thickness between 0 and 8 nm. SFG spectra of the Au gradient films in contact with H2O and D2O demonstrate that resonant water SFG spectra can be obtained using Au films with a thickness of ∼2 nm or less. The measured spectra are distinctively different from the frequency-dependent Fresnel factors of the interface, suggesting that the features we observe in the OH stretching region indeed do not arise from the nonresonant response of the Au films. With the newfound ability to probe interfacial solvent structure at electrode/aqueous interfaces, we hope to provide insights into more efficient electrolyte composition and electrode design.

2.
J Phys Chem B ; 124(38): 8299-8308, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32841033

RESUMEN

Time-resolved fluorescence measurements were used to quantify partitioning of three different 7-aminocoumarin derivatives into DPPC vesicle bilayers as a function of temperature. The coumarin derivatives were structurally equivalent except for the degree of substitution at the 7-amine position. Calculated log P (octanol: water partitioning) coefficients, a common indicator that correlates with bioconcentration, predict that the primary amine (coumarin 151 or C151) would experience a ∼40-fold partition enrichment in polar organic environments (log PC151 = 1.6) while the tertiary amine's (coumarin 152 or C152) concentration should be >500 times enhanced (log PC152 = 2.7). Both values predict that partitioning into lipid membranes is energetically favorable. Time-resolved emission spectra from C151 in solutions containing DPPC vesicles showed that within detection limits, the solute remained in the aqueous buffer regardless of temperature and vesicle bilayer phase. C152 displayed a sharp uptake into DPPC bilayers as the temperature approached DPPC's gel-liquid crystalline transition temperature, consistent with previously reported results ([ J. Phys. Chem. B 2017, 121, 4061-4070]). The secondary amine, synthesized specifically for these studies and dubbed C151.5 with a measured log P value of 1.9, partitioned into the bilayer's polar head group with no pronounced temperature dependence. These experiments illustrate the limitations of using a gross descriptor of preferential solvation to describe solute partitioning into complex, heterogeneous systems having nanometer-scale dimensions. From a broader perspective, results presented in this work illustrate the need for more chemically informed tools for predicting a solute tendency for where and how much it will bioconcentrate within a biological membrane.


Asunto(s)
Cumarinas , Membrana Dobles de Lípidos , Membrana Celular , Soluciones , Temperatura
3.
J Am Chem Soc ; 142(28): 12096-12105, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628017

RESUMEN

Unlike metal or semiconductor electrodes, the surface charge resulting from the protonation or deprotonation of insulating mineral oxides is highly localized and heterogeneous in nature. In this work the Stark active C≡N stretch of potassium thiocyanate is used as a molecular probe of the heterogeneity of the interfacial electrostatic potential at the α-Al2O3(0001)/H2O interface. Vibrational sum frequency generation (vSFG) measurements performed in the OH stretching region suggest that thiocyanate species organize interfacial water similarly to halide ions. Changes in the electrostatic potential are then tracked via Stark shifts of the vibrational frequency of the thiocyanate stretch. Our vSFG measurements show that we can simultaneously measure the vSFG response of SCN- ions experiencing charged and neutral surface sites. We assign local potentials of +308 and -154 mV to positively and negatively charged aluminol groups that are present at pH = 4 and pH = 10, respectively. Thiocyanate anions at positively charged surface sites and negatively charged surface sites and those participating in contact ion pairing adopt similar orientations and are oppositely oriented relative to thiocyanate ions near neutral surface sites. All four species followed Langmuir adsorption isotherms. Density functional theory-molecular dynamics (DFT-MD) simulations of SCN- near the neutral α-Al2O3(0001)/H2O interface show that the vSFG response in the C≡N stretch region originates from a SCN-H-O-Al complex, suggesting the surface site specificity of these experiments. To our knowledge this is the first spectroscopic measurement of local potentials associated with a heterogeneously charged surface. The ability to probe the evolution of local charges in situ could provide vital insight into many industrial, electrochemical, and geochemically relevant interfaces.

4.
J Phys Chem Lett ; 10(9): 2031-2036, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30977654

RESUMEN

Oxide-water interfaces are ubiquitous, with many applications in industry and the environment, yet there is a great deal of controversy over their properties and microscopic structure. This controversy stems, in part, from the unique H-bond networks formed at different surface terminations and mineral compositions. Density functional theory simulations of these interfaces require an accurate description of both the oxide mineral and water in diverse H-bond environments. Thus, herein we simulate the Al2O3(001)-H2O interface using the PBE, PBE-TS, RPBE, SCAN, and HSE06-TS functionals to determine how calculated interfacial properties depend on the choice of functional. We find that the structure of the first few layers of water at the surface is determined by electron correlation in a way that cannot be approximated using semiemipirical van der Waals corrections. Of the functionals investigated, we find that SCAN yields the most accurate interfacial structure, dynamics, and sum frequency generation spectrum. Furthermore, SCAN leads to a reduction in the order of the 2D H-bond network of water at the alumina surface predicted by GGA functionals, leading to a significant decrease in the anisotropy of the diffusion coefficient at the surface. We emphasize the importance of using a functional which accurately describes electron correlation for more complex oxides, such as transition-metal oxides, where electron correlation may play an even greater role in determining the structure and dynamics of the oxide-water interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...