Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 94: 129454, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591316

RESUMEN

Activation of the glucagon-like peptide-1 (GLP-1) receptor stimulates insulin release, lowers plasma glucose levels, delays gastric emptying, increases satiety, suppresses food intake, and affords weight loss in humans. These beneficial attributes have made peptide-based agonists valuable tools for the treatment of type 2 diabetes mellitus and obesity. However, efficient, and consistent delivery of peptide agents generally requires subcutaneous injection, which can reduce patient utilization. Traditional orally absorbed small molecules for this target may offer improved patient compliance as well as the opportunity for co-formulation with other oral therapeutics. Herein, we describe an SAR investigation leading to small-molecule GLP-1 receptor agonists that represent a series that parallels the recently reported clinical candidate danuglipron. In the event, identification of a benzyloxypyrimidine lead, using a sensitized high-throughput GLP-1 agonist assay, was followed by optimization of the SAR using substituent modifications analogous to those discovered in the danuglipron series. A new series of 6-azaspiro[2.5]octane molecules was optimized into potent GLP-1 agonists. Information gleaned from cryogenic electron microscope structures was used to rationalize the SAR of the optimized compounds.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Ensayos Analíticos de Alto Rendimiento , Hipoglucemiantes/farmacología , Octanos/química , Octanos/farmacología , Compuestos de Espiro/química , Compuestos de Espiro/farmacología
2.
Bioorg Med Chem Lett ; 93: 129433, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557923

RESUMEN

The α7 nicotinic acetylcholine receptor is a calcium permeable, ligand-gated ion channel that modulates synaptic transmission in the hippocampus, thalamus, and cerebral cortex. Previously disclosed work described PNU-120596 that acts as a powerful positive allosteric modulator of the α7 nicotinic acetylcholine receptor. The initial structure-activity relationships around PNU-120596 were gleaned from screening a large thiazole library. Independent systematic examination of the aryl and heteroaryl groups resulted in compounds with enhanced potency and improved physico-chemical properties culminating in the identification of 16 (PHA-758454). In the presence of acetylcholine, 16 enhanced evoked currents in rat hippocampal neurons. In a rat model of impaired sensory gating, treatment with 16 led to a reversal of the gating deficit in a dose-dependent manner. These results demonstrate that aryl heteroaryl ureas, like compound 16, may be useful tools for continued exploration of the unique biology of the α7 nicotinic acetylcholine receptor.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Ratas , Animales , Hipocampo , Compuestos de Fenilurea/química , Isoxazoles/farmacología , Isoxazoles/química , Regulación Alostérica
3.
Bioorg Med Chem Lett ; 92: 129394, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379958

RESUMEN

Our previous work on the optimization of a new class of small molecule PCSK9 mRNA translation inhibitors focused on empirical optimization of the amide tail region of the lead PF-06446846 (1). This work resulted in compound 3 that showed an improved safety profile. We hypothesized that this improvement was related to diminished binding of 3 to non-translating ribosomes and an apparent improvement in transcript selectivity. Herein, we describe our efforts to further optimize this series of inhibitors through modulation of the heterocyclic head group and the amine fragment. Some of the effort was guided by an emerging cryo electron microscopy structure of the binding mode of 1 in the ribosome. These efforts led to the identification of 15 that was deemed suitable for evaluation in a humanized PCSK9 mouse model and a rat toxicology study. Compound 15 demonstrated a dose dependent reduction of plasma PCSK9 levels. The rat toxicological profile was not improved over that of 1, which precluded 15 from further consideration as a clinical candidate.

4.
J Med Chem ; 65(12): 8208-8226, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647711

RESUMEN

Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) have revolutionized diabetes therapy, but their use has been limited because they require injection. Herein, we describe the discovery of the orally bioavailable, small-molecule, GLP-1R agonist PF-06882961 (danuglipron). A sensitized high-throughput screen was used to identify 5-fluoropyrimidine-based GLP-1R agonists that were optimized to promote endogenous GLP-1R signaling with nanomolar potency. Incorporation of a carboxylic acid moiety provided considerable GLP-1R potency gains with improved off-target pharmacology and reduced metabolic clearance, ultimately resulting in the identification of danuglipron. Danuglipron increased insulin levels in primates but not rodents, which was explained by receptor mutagensis studies and a cryogenic electron microscope structure that revealed a binding pocket requiring a primate-specific tryptophan 33 residue. Oral administration of danuglipron to healthy humans produced dose-proportional increases in systemic exposure (NCT03309241). This opens an opportunity for oral small-molecule therapies that target the well-validated GLP-1R for metabolic health.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Hipoglucemiantes/farmacología , Péptidos/química
5.
J Org Chem ; 86(10): 7189-7202, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33974415

RESUMEN

Non-enzymatic dynamic kinetic resolution (DKR) of secondary alcohols by enantioselective acylation using an isothiourea-derived HyperBTM catalyst and racemization of slowly reacting alcohol by Bäckvall's ruthenium complex is reported. The DKR approach features high enantioselectivities (up to 99:1), employs easy-to-handle crystalline 4-nitrophenyl isobutyrate as the acylating reagent, and proceeds at room temperature and under an ambient atmosphere. The stereoinduction model featuring cation-π system interactions between the acylated HyperBTM catalyst and π electrons of an alcohol aryl subunit has been elaborated by DFT calculations.


Asunto(s)
Rutenio , Alcoholes , Catálisis , Cinética , Estereoisomerismo
7.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356244

RESUMEN

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobina A/efectos de los fármacos , Hemoglobina Falciforme/efectos de los fármacos , Quinolinas/farmacología , Quinolinas/uso terapéutico , Animales , Eritrocitos/metabolismo , Ratones , Oxígeno/metabolismo , Quinolinas/química
8.
Angew Chem Int Ed Engl ; 59(31): 12998-13003, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32285542

RESUMEN

Preparative reactions that occur efficiently under dilute, buffered, aqueous conditions in the presence of biomolecules find application in ligation, peptide synthesis, and polynucleotide synthesis and sequencing. However, the identification of functional groups or reagents that are mutually reactive with one another, but unreactive with biopolymers and water, is challenging. Shown here are cobalt catalysts that react with alkenes under dilute, aqueous, buffered conditions and promote efficient cycloisomerization and formal Friedel-Crafts reactions. The constraining conditions of bioorthogonal chemistry are beneficial for reaction efficiency as superior conversion at low catalyst concentration is obtained and competent rates in dilute conditions are maintained. Efficiency at high dilution in the presence of buffer and nucleobases suggests that these reaction conditions may find broad application.


Asunto(s)
Alquenos/química , Agua/química , Catálisis , Cobalto/química , Complejos de Coordinación/química , Ciclización , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Isomerismo
9.
Angew Chem Int Ed Engl ; 59(19): 7377-7383, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32050046

RESUMEN

DNA encoded libraries (DEL) have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently reversible adsorption to solid support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C-S, C-P and N-S linkages into DELs, which are underrepresented in the canonical methods.


Asunto(s)
ADN/síntesis química , Adsorción , Técnicas de Química Sintética , Técnicas Químicas Combinatorias , Descubrimiento de Drogas , Indicadores y Reactivos , Bibliotecas de Moléculas Pequeñas , Solubilidad , Sulfonas/química , Sulfóxidos/química
10.
Chem Sci ; 11(45): 12282-12288, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34094436

RESUMEN

DNA-encoded library (DEL) technology has the potential to dramatically expedite hit identification in drug discovery owing to its ability to perform protein affinity selection with millions or billions of molecules in a few experiments. To expand the molecular diversity of DEL, it is critical to develop different types of DNA-encoded transformations that produce billions of molecules with distinct molecular scaffolds. Sequential functionalization of multiple C-H bonds provides a unique avenue for creating diversity and complexity from simple starting materials. However, the use of water as solvent, the presence of DNA, and the extremely low concentration of DNA-encoded coupling partners (0.001 M) have hampered the development of DNA-encoded C(sp3)-H activation reactions. Herein, we report the realization of palladium-catalyzed C(sp3)-H arylation of aliphatic carboxylic acids, amides and ketones with DNA-encoded aryl iodides in water. Notably, the present method enables the use of alternative sets of monofunctional building blocks, providing a linchpin to facilitate further setup for DELs. Furthermore, the C-H arylation chemistry enabled the on-DNA synthesis of structurally-diverse scaffolds containing enriched C(sp3) character, chiral centers, cyclopropane, cyclobutane, and heterocycles.

11.
J Am Chem Soc ; 141(25): 9998-10006, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31136164

RESUMEN

DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.


Asunto(s)
Compuestos de Anilina/síntesis química , Técnicas Químicas Combinatorias/métodos , ADN/química , Piperidinas/síntesis química , Compuestos de Amonio Cuaternario/química , Prueba de Estudio Conceptual
12.
13.
PLoS One ; 13(11): e0206279, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30427871

RESUMEN

Two chemotypes were examined in vitro with CYPs 3A4 and 2C19 by molecular docking, metabolic profiles, and intrinsic clearance deuterium isotope effects with specifically deuterated form to assess the potential for enhancement of pharmacokinetic parameters. The results show the complexity of deuteration as an approach for pharmacokinetic enhancement when CYP enzymes are involved in metabolic clearance. With CYP3A4 the rate limiting step was chemotype-dependent. With one chemotype no intrinsic clearance deuterium isotope effect was observed with any deuterated form, whereas with the other chemotype the rate limiting step was isotopically sensitive, and the magnitude of the intrinsic clearance isotope effect was dependent on the position(s) and extent of deuteration. Molecular docking and metabolic profiles aided in identifying sites for deuteration and predicted the possibility for metabolic switching. However, the potential for an isotope effect on the intrinsic clearance cannot be predicted and must be established by examining select deuterated versions of the chemotypes. The results show how in a deuteration strategy molecular docking, in-vitro metabolic profiles, and intrinsic clearance assessments with select deuterated versions of new chemical entities can be applied to determine the potential for pharmacokinetic enhancement in a discovery setting. They also help explain the substantial failures reported in the literature of deuterated versions of drugs to elicit a systemic enhancement on pharmacokinetic parameters.


Asunto(s)
Citocromo P-450 CYP2C19/química , Citocromo P-450 CYP3A/química , Deuterio/química , Farmacocinética , Citocromo P-450 CYP2C19/efectos de la radiación , Citocromo P-450 CYP3A/efectos de la radiación , Deuterio/farmacología , Hemo/química , Hemo/efectos de la radiación , Humanos , Inactivación Metabólica , Cinética , Microsomas/efectos de la radiación , Simulación del Acoplamiento Molecular , Oxidación-Reducción/efectos de la radiación , Especificidad por Sustrato
14.
J Med Chem ; 61(13): 5704-5718, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29878763

RESUMEN

The optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes. Subtle structural changes yielded significant changes in pharmacology and off-target margins. These efforts led to the identification of 7l and 7n with overall profiles suitable for in vivo evaluation. In a 14-day toxicology study, 7l demonstrated an improved safety profile vs lead 7f. We hypothesize that the improved safety profile is related to diminished binding of 7l to nontranslating ribosomes and an apparent improvement in transcript selectivity due to the lower strength of 7l stalling of off-target proteins.


Asunto(s)
Inhibidores de PCSK9 , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Animales , Diseño de Fármacos , Masculino , Inhibidores de Proteasas/efectos adversos , Inhibidores de Proteasas/metabolismo , Ratas , Ratas Sprague-Dawley , Seguridad , Relación Estructura-Actividad
16.
J Med Chem ; 61(8): 3685-3696, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29627981

RESUMEN

C-X-C chemokine receptor type 7 (CXCR7) is involved in cardiac and immune pathophysiology. We report the discovery of a novel 1,4-diazepine CXCR7 modulator, demonstrating for the first time the role of pharmacological CXCR7 intervention in cardiac repair. Structure-activity-relationship (SAR) studies demonstrated that a net reduction in lipophilicity (log D) and an incorporation of saturated ring systems yielded compounds with good CXCR7 potencies and improvements in oxidative metabolic stability in human-liver microsomes (HLM). Tethering an ethylene amide further improved the selectivity profile (e.g., for compound 18, CXCR7 Ki = 13 nM, adrenergic α 1a Kb > 10 000 nM, and adrenergic ß 2 Kb > 10 000 nM). The subcutaneous administration of 18 in mice led to a statistically significant increase in circulating concentrations of plasma stromal-cell-derived factor 1α (SDF-1α) of approximately 2-fold. Chronic dosing of compound 18 in a mouse model of isoproterenol-induced cardiac injury further resulted in a statistically significant reduction of cardiac fibrosis.


Asunto(s)
Acetamidas/uso terapéutico , Azepinas/uso terapéutico , Cardiotónicos/uso terapéutico , Fibrosis/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Receptores CXCR/metabolismo , Acetamidas/síntesis química , Acetamidas/química , Acetamidas/farmacología , Animales , Azepinas/síntesis química , Azepinas/química , Azepinas/farmacología , Cardiotónicos/síntesis química , Cardiotónicos/química , Cardiotónicos/farmacología , Perros , Fibrosis/inducido químicamente , Cardiopatías/inducido químicamente , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isoproterenol , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad
17.
J Med Chem ; 61(3): 1086-1097, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29300474

RESUMEN

A novel series of morpholine-based nonsteroidal mineralocorticoid receptor antagonists is reported. Starting from a pyrrolidine HTS hit 9 that possessed modest potency but excellect selectivity versus related nuclear hormone receptors, a series of libraries led to identification of morpholine lead 10. After further optimization, cis disubstituted morpholine 22 was discovered, which showed a 45-fold boost in binding affinity and corresponding functional potency compared to 13. While 22 had high clearance in rat, it provided sufficient exposure at high doses to favorably assess in vivo efficacy (increased urinary Na+/K+ ratio) and safety. In contrast to rat, the dog and human MetID and PK profiles of 22 were adequate, suggesting that it could be suitable as a potential clinical asset.


Asunto(s)
Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacología , Morfolinos/química , Morfolinos/farmacología , Oxazinas/química , Receptores de Mineralocorticoides/metabolismo , Animales , Ensayos Clínicos Fase I como Asunto , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Proteica , Ratas , Ratas Wistar , Receptores de Mineralocorticoides/química , Relación Estructura-Actividad
18.
Angew Chem Int Ed Engl ; 56(51): 16218-16222, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29073340

RESUMEN

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Asunto(s)
Hígado/efectos de los fármacos , Inhibidores de PCSK9 , Proproteína Convertasa 9/biosíntesis , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/enzimología , Hígado/metabolismo , Estructura Molecular , Proproteína Convertasa 9/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
19.
PLoS Biol ; 15(3): e2001882, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28323820

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Animales , Línea Celular , Sistema Libre de Células , Colesterol/sangre , Escherichia coli/genética , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Masculino , Espectrometría de Masas , Terapia Molecular Dirigida , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/genética , Biosíntesis de Proteínas/fisiología , Conejos , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo , Ribosomas/fisiología
20.
J Org Chem ; 82(2): 869-886, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28060519

RESUMEN

A new catalyst for the dynamic kinetic resolution of azole hemiaminals has been developed using late-stage structural modifications of the tert-leucinol-derived chiral subunit of DMAP species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...