Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11710, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778075

RESUMEN

In this paper, we investigate the optical, electronic, vibrational, and excitonic properties of four two-dimensional ß -pnictogen materials-nitrogenene, phosphorene, arsenene, and antimonene-via density functional theory calculations and the Bethe-Salpeter equation. These materials possess indirect gaps with significant exciton binding energies, demonstrating isotropic behavior under circular light polarization and anisotropic behavior under linear polarization by absorbing light within the visible solar spectrum (except for nitrogenene). Furthermore, we observed that Raman frequencies red-shift in heavier pnictogen atoms aligning with experimental observations; simultaneously, quasi-particle effects notably influence the linear optical response intensively. These monolayers' excitonic effects lead to optical band gaps optimized for solar energy harvesting, positioning them as promising candidates for advanced optoelectronic device applications.

2.
Chemphyschem ; 25(16): e202400118, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38742372

RESUMEN

In recent decades, two-dimensional (2D) perovskites have emerged as promising semiconductors for next-generation photovoltaics, showing notable advancements in solar energy conversion. Herein, we explore the impact of alternative inorganic lattice BX-based compositions (B=Ge or Sn, X=Br or I) on the energy gap and stability. Our investigation encompasses BA2Man-1BnX3n+1 2D Ruddlesden-Popper perovskites (for n=1-5 layers) and 3D bulk (MA)BX3 systems, employing first-principles calculations with spin-orbit coupling (SOC), DFT-1/2 quasiparticle, and D3 dispersion corrections. The study unveils how atoms with smaller ionic radii induce anisotropic internal and external distortions within the inorganic and organic lattices. Introducing the spacers in the low-layer regime reduces local distortions but widens band gaps. Our calculation protocol provides deeper insights into the physics and chemistry underlying 2D perovskite materials, paving the way for optimizing environmentally friendly alternatives that can efficiently replace with sustainable materials.

3.
Phys Chem Chem Phys ; 26(17): 13172-13181, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630106

RESUMEN

Transition metal nanoclusters can exhibit unique and tunable properties which result not only from their chemical composition but also from their atomic packing and quantized electronic structures. Here, we introduce a promising family of bimetallic TM@Ti12, TM@Zr12, and TM@Hf12 nanoclusters with icosahedral geometry, where TM represents an atom from groups 3 to 12. Density functional theory calculations show that their stability can be explained with familiar concepts of metal cluster electronic and atomic shell structures. The magnetic properties of these quasispherical clusters are entirely consistent with superatom electronic shells and Hund's rules, and can be tuned by the choice of the TM dopant. The computed cluster atomization energies were analyzed in terms of the elements' cohesive energy, Ecoh, and contributions from geometric distortion, Edis, surface energy, Es, and ionic bonding, Ei. Some clusters have anomalous stability relative to Ecoh + Edis + Es + Ei. We attribute this to superatomic character associated with a favorable atomic and electronic shell structure. This raises the possibility of designing stable superatoms and materials with tailored electronic and magnetic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA