Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(1): 215-227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049693

RESUMEN

Given the increasing problems of water and soil contamination with cadmium (Cd), it is necessary to investigate the genetic and physiological mechanisms of tolerance to this metal in different crops, which can be used for the development of effective crop management strategies. This study aimed to assess the potential of grafting as a strategy to increase Cd tolerance and reduce absorption in tomato by evaluating the contribution of the root system and aerial parts for tolerance mechanisms. To this end, reciprocal grafting and diallel analyses were used to examine the combining ability of contrasting tomato genotypes under exposure to 0 and 35 µM CdCl2. Roots and above-ground parts were found to have specific mechanisms of Cd tolerance, absorption, and accumulation. Grafting of the USP15 genotype (scion) on USP16 (rootstock) provided the greatest synergism, increasing the tolerance index and reducing the translocation index and Cd accumulation in leaves. USP163 exhibited potential for breeding programs that target genotypes with high Cd tolerance. In tomato, both Cd tolerance and accumulation in aerial parts are genotype- and tissue-specific, controlled by a complex system of complementary mechanisms that need to be better understood to support the development of strategies to reduce Cd contamination in aerial parts.


Asunto(s)
Contaminantes del Suelo , Solanum lycopersicum , Cadmio , Raíces de Plantas , Fitomejoramiento , Agua
2.
Environ Sci Pollut Res Int ; 30(41): 93846-93861, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37523087

RESUMEN

Bioremediation of toxic metals is a feasible and low-cost remediation tool to reduce metal contamination. Plant-fungus interactions can improve this technique. Eichhornia crassipes (Mart.) Solms is a macrophyte reported to bioremediate contaminated water. Thus, the present study aimed to isolate endophytic fungi from E. crassipes, select a highly cadmium (Cd) tolerant isolate and evaluate its bioremediation potential. This was evaluated by (1) the fungus tolerance and capacity to accumulate Cd; (2) Cd effects on cell morphology (using SEM and TEM) and on the fungal antioxidant defense system, as well as (3) the effect on model plant Solanum lycopersicum L. cultivar Calabash Rouge, inoculated with the endophyte fungus and exposed to Cd. Our results selected the endophyte Mucor sp. CM3, which was able to tolerate up to 1000 g/L of Cd and to accumulate 900 mg of Cd/g of biomass. Significant changes in Mucor sp. CM3 morphology were observed when exposed to high Cd concentrations, retaining this metal both in its cytoplasm and in its cell wall, which may be linked to detoxification and metal sequestration mechanisms related to the formation of Cd-GSH complexes. In addition, Cd stress induced the activation of all tested antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) - in this endophytic fungus. Moreover, when inoculated in tomato plants, this fungus promoted plant growth (in treatments without Cd) and induced an increased metal translocation to plant shoot, showing its potential to increase metal bioremediation. Therefore, this study indicates that the isolated endophyte Mucor sp. CM3 can be applied as a tool in different plant conditions, improving plant bioremediation and reducing the environmental damage caused by Cd, while also promoting plant growth in the absence of contaminants.


Asunto(s)
Eichhornia , Contaminantes del Suelo , Cadmio/toxicidad , Antioxidantes/farmacología , Mucor , Biodegradación Ambiental , Metales/farmacología , Endófitos , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 892: 164610, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37270021

RESUMEN

Cadmium (Cd) is a highly toxic and carcinogenic pollutant that poses a threat to human and animal health by affecting several major organ systems. Urbanization and human activities have led to significant increases in Cd concentration in the environment, including in agroecosystems. To protect against the harmful effects of Cd, efforts are being made to promote safe crop production and to clean up Cd-contaminated agricultural lands and water, reducing Cd exposure through the consumption of contaminated agricultural products. There is a need for management strategies that can improve plant Cd tolerance and reduce Cd accumulation in crop plant tissues, all of which involve understanding the impacts of Cd on plant physiology and metabolism. Grafting, a longstanding plant propagation technique, has been shown to be a useful approach for studying the effects of Cd on plants, including insights into the signaling between organs and organ-specific modulation of plant performance under this form of environmental stress. Grafting can be applied to the large majority of abiotic and biotic stressors. In this review, we aim to highlight the current state of knowledge on the use of grafting to gain insights into Cd-induced effects as well as its potential applicability in safe crop production and phytoremediation. In particular, we emphasize the utility of heterograft systems for assessment of Cd accumulation, biochemical and molecular responses, and tolerance in crop and other plant species under Cd exposure, as well as potential intergenerational effects. We outline our perspectives and future directions for research in this area and the potential practical applicability of plant grafting, with attention to the most obvious gaps in knowledge. We aim at inspiring researchers to explore the potential of grafting for modulating Cd tolerance and accumulation and for understanding the mechanisms of Cd-induced responses in plants for both agricultural safety and phytoremediation purposes.


Asunto(s)
Cadmio , Contaminantes del Suelo , Humanos , Cadmio/metabolismo , Plantas/metabolismo , Biodegradación Ambiental , Estrés Fisiológico , Fenómenos Fisiológicos de las Plantas , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo
4.
Environ Res ; 216(Pt 2): 114577, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252830

RESUMEN

Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 µM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 µg g-1 DW) and S/T (235.61 µg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.


Asunto(s)
Cadmio , Solanum lycopersicum , Cadmio/toxicidad , Cadmio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Raíces de Plantas/metabolismo , Hojas de la Planta , Genotipo
7.
Sci Total Environ ; 789: 147885, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34323842

RESUMEN

The present study aimed to investigate the Cd-induced transgenerational effects on plants. Grafted tomato plants, which exhibited the same cultivar as scion and distinct cultivars with contrasting Cd-tolerance as rootstocks, were grown in soil without and with artificial addition of Cd (less than 2.0, and 6.9 mg kg-1 of Cd, respectively) in a pot experiment carried out in a greenhouse. Their fruits were harvested to extract seeds (i.e., the progenies), which were sown over either Cd-free (control) or Cd-containing germitest paper (germination testing paper with 0 and 35 µM of CdCl2, respectively) and grown in a growth chamber. The immediate progeny of all grafting combinations from stressed plants presented an elevated germinability, despite high internal Cd concentration. When sown in Cd-containing germitest paper, the immediate progeny of plants grown in soil with no Cd addition was generally able to maintain or even increase the content of carotenoids and chlorophylls a and b (up to 93.3, 62.8 and 76.1%, respectively), indicating a Cd-induced hormetic effect on photosynthetic pigments. Two of the grafting combinations from stressed plants yielded seeds that generated seedlings with enhanced dry mass when they were sown in Cd-free media (~41%), suggesting a Cd-induced transgenerational enhancement of biomass production. Because only one tomato cultivar was used as scion, data indicated that type and degree of Cd-induced transgenerational effects depend strongly on signals generated and/or processed in roots of the parental plants. When sown in Cd-contaminated germitest paper, the immediate progeny of Cd-treated plants presented major reductions in the leaf area (35-69%) and content of photosynthetic pigments (57-93%) in comparison to the progeny from control plants. However, one of the grafting combinations exhibited satisfactory performance after "double" exposure to Cd, showing 91% of the biomass that was produced in the seedlings of control seeds from control plants. Further investigation indicated that adjustments in the chlorophyll fluorescence behavior might counterbalance losses in leaf pigments and area. Taken together, our data provide new insights on the origin, outcomes and mode of action of the Cd-induced transgenerational effects.

8.
Arch Microbiol ; 203(7): 3869-3882, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34013419

RESUMEN

Strains of Bacillus thuringiensis (Bt) are commonly commercialized as bioinoculants for insect pest control, but their benefits go beyond their insecticidal property: they can act as plant growth-promoters. Auxins play a major role in the plant growth promotion. However, the mechanism of auxin production by the Bacilli group, and more specifically by Bt strains, is unclear. In previous work, the plant growth-promoting rhizobacterium (PGPR) B. thuringiensis strain RZ2MS9 increased the corn roots. This drew our attention to the strain's auxin production trait, earlier detected in vitro. Here, we demonstrate that in its genome, RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production. We also detected that the strain produces almost five times more IAA during the stationary phase. The bacterial application increased the shoot dry weight of the Micro-Tom (MT) tomato by 24%. The application also modified MT root architecture, with an increase of 26% in the average lateral root length and inhibition of the axial root. At the cellular level, RZ2MS9-treated MT plants presented elongated root cortical cells with intensified mitotic activity. Altogether, these are the best characterized auxin-associated phenotypes. Besides that, no growth alteration was detected in the auxin-insensitive diageotropic (dgt) plants either with or without the RZ2MS9 inoculation. Our results suggest that auxins play an important role in the ability of B. thuringiensis RZ2MS9 to promote MT growth and provide a better understanding of the auxin production mechanism by a Bt strain.


Asunto(s)
Bacillus thuringiensis , Ácidos Indolacéticos , Solanum lycopersicum , Bacillus thuringiensis/fisiología , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
9.
Environ Sci Pollut Res Int ; 28(20): 26172-26181, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33834343

RESUMEN

The objective of the present study was to assess the response of tomato cultivars with different fruit colors to exposure to increasing Cd levels in the substrate by measuring the impacts of Cd on the oxidative stress indicators and physicochemical features of fruits, as well as plant development and yield components. A completely randomized experiment in a 3 × 3 factorial design [tomato cultivar (which produces purple, red, or white fruits) vs Cd level in the substrate (0, 3.6, or 12 mg kg-1)] was performed. The cultivation of plants in substrate containing 3.6 mg kg-1 Cd did not affect yield, but fruits exhibited nonpermissive Cd concentrations in both peel and mesocarp across all cultivars. By contrast, yield was decreased in plants with red and white fruits after their cultivation in substrate containing 12 mg kg-1 Cd, while the productivity of plants with purple fruits was maintained under such conditions. The hydrogen peroxide content in the fruit mesocarp depended only on cultivar. However, an increased lipid peroxidation level was detected in the mesocarp of purple fruits at the highest Cd concentration. No parameters of fruit quality [i.e., diameter, length, °Brix, pH, titratable acidity, color (L*, a*, and b*), and concentrations of lycopene and ß-carotene in mesocarp] were affected by long-term exposure to Cd at 12 mg kg-1. In conclusion, the results of this study suggested that the potential Cd side effects on diverse tomato quality features can be buffered at the fruit level because these features were maintained at the usual values despite high Cd concentrations in tomato peel and pulp. Moreover, these buffering mechanisms are independent of lycopene and ß-carotene concentrations in fruit peel, since the three tomato cultivars that were evaluated in the present study (white fruits, possessing no or negligible concentrations of these carotenoids, and red and purple tomato, possessing high lycopene and ß-carotene concentrations) were able to sustain several fruit quality parameters after long-term exposure to high Cd concentrations in the substrate.


Asunto(s)
Cadmio/toxicidad , Solanum lycopersicum , Carotenoides , Color , Frutas
10.
Ecotoxicology ; 28(9): 1046-1055, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502144

RESUMEN

This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.


Asunto(s)
Cadmio/toxicidad , Ciclo Celular/efectos de los fármacos , Inestabilidad Cromosómica/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/efectos de los fármacos , Plantones/efectos de los fármacos
11.
J Environ Manage ; 240: 84-92, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30928798

RESUMEN

Distinct tomato genotypes possess different tolerance degree to cadmium (Cd), but the mechanisms behind this phenomenon are scarcely understood. To this end, the physiological, biochemical, anatomical, nutritional and molecular mechanisms associated to the plant tolerance against Cd toxicity were investigated in five tomato accessions with contrasting sensitivity to Cd exposure. Firstly, the data revealed that larger biomass loss was not always coupled to higher Cd concentration, indicating that other events, in addition to the internal Cd accumulation, impact tomato performance at early stages of Cd exposure. Secondly, the results indicated that the fine regulation of nutrient status, particularly magnesium (Mg), boron (B) and manganese (Mn), is associated to the mitigation of Cd toxicity. Magnesium status was coupled to the modulation of root development, resulting in changes in root hair formation and biomass allocation. Boron accumulation in leaves was linked to Cd toxicity, suggesting that tolerance mechanisms involved strategies to decrease or even avoid B excess in photosynthetic tissues. Disturbances in Mn status, i.e. Mn excess in leaves and Mn deficiency in roots, were also related to tomato sensitivity to Cd exposure. Thirdly, plant capacity to maintain leaf blade expansion is a relevant strategy for a better tomato development after short-term Cd exposure. Fourthly, tomato tolerance to Cd-induced stress does not depend on CAT activity enhancements in such conditions. In conclusion, tomato ability to quickly manage its nutritional status is necessary for alleviation of the Cd effects at early stages of exposure to this metal. The better understanding about tolerance mechanisms and mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crops.


Asunto(s)
Solanum lycopersicum , Cadmio , Magnesio , Manganeso , Raíces de Plantas
12.
Ecotoxicology ; 27(10): 1293-1302, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30259382

RESUMEN

Cadmium (Cd) toxicity is frequently coupled to its accumulation in plants, but not always the highest Cd concentration triggers the worst damages, indicating that additional events influence the magnitude of Cd side-effects. We investigated the early mechanisms behind the differential Cd-induced impacts on plant development of four tomato accessions with contrasting tolerance to Cd toxicity. At organ level, the highest Cd concentration was not associated with the largest biomass losses. In leaves, changes in superoxide dismutase and catalase activities were not related to differences in Cd concentration, which was unable to provoke H2O2 overproduction on the sixth day of plant exposure to this metal. Further investigation in the mineral profile revealed that magnitude of Cd toxicity depends probably on synergic effects from increased B status, in addition to the own Cd accumulation. Furthermore, disbalances in Mn status (i.e., excess in leaves and deficiency in roots) may enhance Cd toxicity degree. According to data, however, the low magnesium (Mg) status can be linked to tomato tolerance against Cd toxicity. In conclusion, the tomato tolerance degree under short-Cd exposure depends on actively, finely regulation of mineral homeostasis that results in different development of plant organs. The better understanding on the mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crop yield.


Asunto(s)
Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/fisiología , Catalasa/metabolismo , Solanum lycopersicum/efectos de los fármacos , Oxidación-Reducción , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Plantones/efectos de los fármacos , Superóxido Dismutasa/metabolismo
13.
Environ Sci Pollut Res Int ; 25(27): 27535-27544, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30051291

RESUMEN

This work aimed to develop a reliable and fast approach to estimate the plant tolerance degree to heavy metal (HM) phytotoxicity. Two independent experiments were carried out using tomato accessions, with contrasting morphological features, that were grown in a hydroponic solution containing different CdCl2 concentrations for 7 days. Plant dry weight and chlorophyll content (SPAD units) were evaluated, and tolerance degree to Cd toxicity was estimated according to the tolerance index (TI), which is a new mathematical formula based on plant biomass proposed in this study. Although with different magnitudes, tomato exhibited reductions in their dry weight concurrently with the increasing CdCl2 concentration. By contrast, chlorophyll content presented no standard response, decreasing and even increasing according to CdCl2 concentrations, indicating that only under certain conditions (particularly, at CdCl2 50 µM), this parameter can be used to estimate plant tolerance to Cd toxicity. TI was efficiently able to segregate tomato cultivars with similar performance (based on the total dry weight of plants), and such segregation was optimized when the hydroponic solution contained from 25 to 50 µM CdCl2. Within this range, data pointed at 35 µM CdCl2 as the best concentration to be employed in studies related to the tomato tolerance/sensitivity to Cd toxicity. In conclusion, TI proved to be a reliable estimator of tolerance degree to Cd exposure in genetically distinct tomato accessions. Moreover, TI can be used for this same purpose in plants under other HM-induced stresses.


Asunto(s)
Cloruro de Cadmio/toxicidad , Metales Pesados/toxicidad , Solanum lycopersicum/efectos de los fármacos , Biomasa , Clorofila/metabolismo , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Modelos Teóricos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo
14.
Ecotoxicology ; 27(3): 245-258, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29294240

RESUMEN

Despite numerous studies on cadmium (Cd) uptake and accumulation in crops, relatively little is available considering the temporal dynamic of Cd uptake and responses to stress focused on the root system. Here we highlighted the responses to Cd-induced stress in roots of two tomato genotypes contrasting in Cd-tolerance: the tolerant Pusa Ruby and the sensitive Calabash Rouge. Tomato genotypes growing in the presence of 35 µM CdCl2 exhibited a similar trend of Cd accumulation in tissues, mainly in the root system and overall plants exhibited reduction in the dry matter weight. Both genotypes showed similar trends for malondialdehyde and hydrogen peroxide accumulation with increases when exposed to Cd, being this response more pronounced in the sensitive genotype. When the antioxidant machinery is concerned, in the presence of Cd the reduced glutathione content was decreased in roots while ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) activities were increased in the presence of Cd in the tolerant genotype. Altogether these results suggest APX, GR and GST as the main players of the antioxidant machinery against Cd-induced oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Solanum lycopersicum/metabolismo , Genotipo , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Raíces de Plantas/enzimología , Estrés Fisiológico , Factores de Tiempo
15.
Protoplasma ; 255(4): 989-999, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29354852

RESUMEN

Although negative effects on the offspring fitness can be triggered by the mother-plant exposure to environmental stresses, some plants are able to "remember" past incidents and enhance the progeny tolerance. Here, the mineral profile, cytogenetic modifications, and physiological potential of seeds from two tomato cultivars, with contrasting tolerance degrees to cadmium (Cd) toxicity, were evaluated after plant exposure to this metal. Both cultivars exhibited high Cd translocation to the seeds; however, the tolerant tomato accumulated more Cd than did the sensitive one. As a consequence of the Cd accumulation, reductions in the Mn concentration in Cd-challenged plants were detected. Surprisingly, seed germination and vigor were increased in the tolerant tomato cultivar after Cd exposure, despite increases in the chromosomal abnormalities. By contrast, seeds from the sensitive cultivar exhibited no changes in their physiological potential after Cd exposure, despite Cd-induced reductions in the mitotic index. Moreover, bunch position exerted effects on the vigor and type of chromosomal abnormality. The results show that maternal plant exposure to Cd can affect tomato offspring by changing the seed physiological potential, and such effect can be partially explained by alterations in the seed-derived elements (essential and non-essential) and genotype-dependent tolerance mechanisms.


Asunto(s)
Cadmio/toxicidad , Germinación/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Semillas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Genotipo
16.
Ciênc. rural ; 42(11): 1941-1946, nov. 2012. ilus
Artículo en Portugués | LILACS | ID: lil-654318

RESUMEN

Variedades ou híbridos de tomateiro utilizados para produção de molhos e ketchups costumam ter hábito determinado, enquanto a maioria dos genótipos utilizados na produção para mesa (consumo in natura) possuem hábito indeterminado. Além de influenciar no manejo da cultura, o hábito de crescimento pode alterar parâmetros de produtividade, como o teor de sólidos solúveis totais (SST) nos frutos. O hábito de crescimento é controlado principalmente pelo gene SELF-PRUNING (SP), que é um dos componentes de uma pequena família gênica da qual faz parte também o gene SINGLE FLOWER TRUSS (SFT), atualmente considerado um dos componentes do tão buscado "florígeno". O entendimento da função bioquímica e o efeito fisiológico de tais genes em interação com o ambiente e outros genes (epistasia) possibilita a manipulação de parâmetros como precocidade e SST. Além disso, fornece subsídios para compreender a base genética do crescimento semideterminado, que combina vantagens do hábito determinado e indeterminado, podendo ser usado pelos melhoristas de plantas para o desenvolvimento de novas cultivares.


Hybrids or open pollinated tomato cultivars used for sauces and ketchups production usually has determinate growth habit, while most of the genotypes used in the production to salads (in natura consumption) has indeterminate growth habit. Additionally, growth habit can have influence on culture management, productivity and total soluble solids (TSS) in fruits. The growth habit is mainly controlled by the gene SELF-PRUNING (SP), which is a component of a small gene family which is also part of the gene SINGLE FLOWER TRUSS (SFT), currently considered one of the components so sought after 'florigin'. Understanding the biochemical function and physiological effect of such genes in interaction with the environment and other genes (epistasis), allows the manipulation of parameters such as precocity and TSS. It also provides subsidies to understand the genetic basis of semideterminate growth, which combines the advantages of determinate and indeterminate habit and can be used for plant breeders to development of new cultivars.

17.
Ciênc. rural ; 41(7): 1218-1228, jul. 2011. tab
Artículo en Portugués | LILACS | ID: lil-595905

RESUMEN

A evolução das plantas cultivadas, que teve início há cerca de 13.000 anos, está sujeita aos mesmos processos evolutivos naturais, aliada à ação do homem de forma consciente ou inconsciente, levando à domesticação. Nesta revisão, são apresentados os principais fatores evolutivos, tais como mutação, hibridação, migração, seleção e deriva genética, que, de alguma maneira, estão envolvidos com a origem, evolução e domesticação de plantas cultivadas. São apresentados também exemplos de como esses processos influenciaram na diversidade intra e interespecífica de plantas cultivadas, com o aparecimento de novas variedades ou mesmo de novas espécies. De modo geral, tais processos atuaram na ampliação, na manutenção, bem como na redução da variabilidade genética das plantas cultivadas.


The evolution of crop plants, which began at about 13,000 years ago, is subject to the same natural evolutionary processes, coupled with the action of man, consciously or unconsciously, leading to domestication. This review presents the main evolutionary factors such as mutation, hybridization, migration, selection and genetic drift, which somehow are involved in the origin, evolution and domestication of crop plants. Examples of how these processes influenced in the intra and interespecific diversity of crop plants, with the uprise of new varieties or even of new species, are also presented. In general, these processes have worked well in the increase, maintenance, as well as in the reduction of genetic diversity of crop plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA