Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 123(46): 10030-10039, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31661957

RESUMEN

Silane (SiH4) plasmas are widely used for the deposition of hydrogenated amorphous silicon (a-Si:H) films. Nevertheless, the chemical processes governing film deposition are still incompletely understood. Moreover, there is still no general method available to determine the absolute concentration of the silyl radical (SiH3), which is the accepted chemical precursor of a-Si:H films. In this study, a 10% silane in helium RF plasma was spectroscopically investigated between 2085 and 2175 cm-1 using an external cavity quantum cascade laser (EC-QCL) based spectrometer. This led to the identification of 4 distinct species from their absorption features: SiH4, disilane (Si2H6), SiH3, and an unassigned short-lived species. Furthermore, 17 absorption features of SiH3 were identified and unambiguously assigned. Fast spectral scanning of selected absorption features belonging to the four species in a 10 Hz pulsed RF plasma enabled the measurement and interpretation of their temporal behavior in terms of plausible chemical reactions involving silicon containing species. By quantitatively measuring the decay of the SiH3 a ← a pP4 (5) transition at 2151.3207 cm-1 after the discharge was stopped, its line strength (S) was determined to be (7.5 ± 5.5) × 10-20 cm2 cm-1 mol-1.

2.
Chemphyschem ; 20(21): 2748-2753, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31544999

RESUMEN

As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers-Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA