Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sci Rep ; 14(1): 5910, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467630

RESUMEN

The function of spike synchrony is debatable: some researchers view it as a mechanism for binding perceptual features, others - as a byproduct of brain activity. We argue for an alternative computational role: synchrony can estimate the prior probability of incoming stimuli. In V1, this can be achieved by comparing input with previously acquired visual experience, which is encoded in plastic horizontal intracortical connections. V1 connectivity structure can encode the acquired visual experience in the form of its aggregate statistics. Since the aggregate statistics of natural images tend to follow the Gestalt principles, we can assume that V1 is more often exposed to Gestalt-like stimuli, and this is manifested in its connectivity structure. At the same time, the connectivity structure has an impact on spike synchrony in V1. We used a spiking model with V1-like connectivity to demonstrate that spike synchrony reflects the Gestalt structure of the stimulus. We conducted simulation experiments with three Gestalt laws: proximity, similarity, and continuity, and found substantial differences in firing synchrony for stimuli with varying degrees of Gestalt-likeness. This allows us to conclude that spike synchrony indeed reflects the Gestalt structure of the stimulus, which can be interpreted as a mechanism for prior probability estimation.


Asunto(s)
Percepción Visual , Simulación por Computador
2.
Sensors (Basel) ; 23(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37687895

RESUMEN

Electroencephalography (EEG) is a crucial tool in cognitive neuroscience, enabling the study of neurophysiological function by measuring the brain's electrical activity. Its applications include perception, learning, memory, language, decision making and neural network mapping. Recently, interest has surged in extending EEG measurements to domestic environments. However, the high costs associated with traditional laboratory EEG systems have hindered accessibility for many individuals and researchers in education, research, and medicine. To tackle this, a mobile-EEG device named "DreamMachine" was developed. A more affordable alternative to both lab-based EEG systems and existing mobile-EEG devices. This system boasts 24 channels, 24-bit resolution, up to 6 h of battery life, portability, and a low price. Our open-source and open-hardware approach empowers cognitive neuroscience, especially in education, learning, and research, opening doors to more accessibility. This paper introduces the DreamMachine's design and compares it with the lab-based EEG system "asalabTM" in an eyes-open and eyes-closed experiment. The Alpha band exhibited higher power in the power spectrum during eyes-closed conditions, whereas the eyes-open condition showed increased power specifically within the Delta frequency range. Our analysis confirms that the DreamMachine accurately records brain activity, meeting the necessary standards when compared to the asalabTM system.


Asunto(s)
Computadoras de Mano , Aprendizaje , Humanos , Suministros de Energía Eléctrica , Electroencefalografía , Ojo
3.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047260

RESUMEN

Propofol belongs to a class of molecules that are known to block learning and memory in mammals, including rodents and humans. Interestingly, learning and memory are not tied to the presence of a nervous system. There are several lines of evidence indicating that single-celled organisms also have the capacity for learning and memory which may be considered as basal intelligence. Here, we introduce a new experimental model for testing the learning ability of Physarum polycephalum, a model organism frequently used to study single-celled "intelligence". In this study, the impact of propofol on Physarum's "intelligence" was tested. The model consists of a labyrinth of subsequent bifurcations in which food (oat flakes soaked with coconut oil-derived medium chain triglycerides [MCT] and soybean oil-derived long chain triglycerides [LCT]) or propofol in MCT/LCT) is placed in one of each Y-branch. In this setting, it was tested whether Physarum memorized the rewarding branch. We saw that Physarum was a quick learner when capturing the first bifurcations of the maze; thereafter, the effect decreased, perhaps due to reaching a state of satiety. In contrast, when oat flakes were soaked with propofol, Physarum's preference for oat flakes declined significantly. Several possible actions, including the blocking of gamma-aminobutyric acid (GABA) receptor signaling, are suggested to account for this behavior, many of which can be tested in our new model.


Asunto(s)
Physarum polycephalum , Propofol , Humanos , Propofol/farmacología , Anestésicos Intravenosos/farmacología , Dolor , Triglicéridos/farmacología
4.
Front Comput Neurosci ; 15: 746204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880741

RESUMEN

While abundant in biology, foveated vision is nearly absent from computational models and especially deep learning architectures. Despite considerable hardware improvements, training deep neural networks still presents a challenge and constraints complexity of models. Here we propose an end-to-end neural model for foveal-peripheral vision, inspired by retino-cortical mapping in primates and humans. Our model has an efficient sampling technique for compressing the visual signal such that a small portion of the scene is perceived in high resolution while a large field of view is maintained in low resolution. An attention mechanism for performing "eye-movements" assists the agent in collecting detailed information incrementally from the observed scene. Our model achieves comparable results to a similar neural architecture trained on full-resolution data for image classification and outperforms it at video classification tasks. At the same time, because of the smaller size of its input, it can reduce computational effort tenfold and uses several times less memory. Moreover, we present an easy to implement bottom-up and top-down attention mechanism which relies on task-relevant features and is therefore a convenient byproduct of the main architecture. Apart from its computational efficiency, the presented work provides means for exploring active vision for agent training in simulated environments and anthropomorphic robotics.

5.
Sci Rep ; 11(1): 20394, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650131

RESUMEN

Missing terms in dynamical systems are a challenging problem for modeling. Recent developments in the combination of machine learning and dynamical system theory open possibilities for a solution. We show how physics-informed differential equations and machine learning-combined in the Universal Differential Equation (UDE) framework by Rackauckas et al.-can be modified to discover missing terms in systems that undergo sudden fundamental changes in their dynamical behavior called bifurcations. With this we enable the application of the UDE approach to a wider class of problems which are common in many real world applications. The choice of the loss function, which compares the training data trajectory in state space and the current estimated solution trajectory of the UDE to optimize the solution, plays a crucial role within this approach. The Mean Square Error as loss function contains the risk of a reconstruction which completely misses the dynamical behavior of the training data. By contrast, our suggested trajectory-based loss function which optimizes two largely independent components, the length and angle of state space vectors of the training data, performs reliable well in examples of systems from neuroscience, chemistry and biology showing Saddle-Node, Pitchfork, Hopf and Period-doubling bifurcations.

6.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800215

RESUMEN

With the further development of highly automated vehicles, drivers will engage in non-related tasks while being driven. Still, drivers have to take over control when requested by the car. Here, the question arises, how potentially distracted drivers get back into the control-loop quickly and safely when the car requests a takeover. To investigate effective human-machine interactions, a mobile, versatile, and cost-efficient setup is needed. Here, we describe a virtual reality toolkit for the Unity 3D game engine containing all the necessary code and assets to enable fast adaptations to various human-machine interaction experiments, including closely monitoring the subject. The presented project contains all the needed functionalities for realistic traffic behavior, cars, pedestrians, and a large, open-source, scriptable, and modular VR environment. It covers roughly 25 km2, a package of 125 animated pedestrians, and numerous vehicles, including motorbikes, trucks, and cars. It also contains all the needed nature assets to make it both highly dynamic and realistic. The presented repository contains a C++ library made for LoopAR that enables force feedback for gaming steering wheels as a fully supported component. It also includes all necessary scripts for eye-tracking in the used devices. All the main functions are integrated into the graphical user interface of the Unity® editor or are available as prefab variants to ease the use of the embedded functionalities. This project's primary purpose is to serve as an open-access, cost-efficient toolkit that enables interested researchers to conduct realistic virtual reality research studies without costly and immobile simulators. To ensure the accessibility and usability of the mentioned toolkit, we performed a user experience report, also included in this paper.


Asunto(s)
Peatones , Realidad Virtual , Adaptación Fisiológica , Automóviles , Humanos , Vehículos a Motor
7.
Curr Biol ; 31(7): 1417-1427.e6, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33607035

RESUMEN

Dreams take us to a different reality, a hallucinatory world that feels as real as any waking experience. These often-bizarre episodes are emblematic of human sleep but have yet to be adequately explained. Retrospective dream reports are subject to distortion and forgetting, presenting a fundamental challenge for neuroscientific studies of dreaming. Here we show that individuals who are asleep and in the midst of a lucid dream (aware of the fact that they are currently dreaming) can perceive questions from an experimenter and provide answers using electrophysiological signals. We implemented our procedures for two-way communication during polysomnographically verified rapid-eye-movement (REM) sleep in 36 individuals. Some had minimal prior experience with lucid dreaming, others were frequent lucid dreamers, and one was a patient with narcolepsy who had frequent lucid dreams. During REM sleep, these individuals exhibited various capabilities, including performing veridical perceptual analysis of novel information, maintaining information in working memory, computing simple answers, and expressing volitional replies. Their responses included distinctive eye movements and selective facial muscle contractions, constituting correctly answered questions on 29 occasions across 6 of the individuals tested. These repeated observations of interactive dreaming, documented by four independent laboratory groups, demonstrate that phenomenological and cognitive characteristics of dreaming can be interrogated in real time. This relatively unexplored communication channel can enable a variety of practical applications and a new strategy for the empirical exploration of dreams.


Asunto(s)
Comunicación , Sueños/fisiología , Sueños/psicología , Investigadores , Sujetos de Investigación/psicología , Relaciones Investigador-Sujeto , Sueño REM/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Polisomnografía , Adulto Joven
8.
Neural Netw ; 134: 23-41, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33279863

RESUMEN

How do humans acquire a meaningful understanding of the world with little to no supervision or semantic labels provided by the environment? Here we investigate embodiment with a closed loop between action and perception as one key component in this process. We take a close look at the representations learned by a deep reinforcement learning agent that is trained with high-dimensional visual observations collected in a 3D environment with very sparse rewards. We show that this agent learns stable representations of meaningful concepts such as doors without receiving any semantic labels. Our results show that the agent learns to represent the action relevant information, extracted from a simulated camera stream, in a wide variety of sparse activation patterns. The quality of the representations learned shows the strength of embodied learning and its advantages over fully supervised approaches.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Refuerzo en Psicología , Humanos , Semántica
9.
Neuroimage ; 220: 117104, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32621973

RESUMEN

Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets of healthy human subjects, as well as the reliability of results over the same subjects in different rescan sessions, image resolutions, or FreeSurfer versions. In terms of comparability, our results show substantial differences in the structural covariance matrix between data sets of age- and sex-matched healthy human adults. These differences persist after univariate site correction, they are exacerbated by low sample sizes, and they are most pronounced when using average cortical thickness as a morphological measure. Down-stream graph theoretic analyses further show statistically significant differences. In terms of reliability, substantial differences were also found when comparing repeated scan sessions of the same subjects, image resolutions, and even FreeSurfer versions of the same image. We could further estimate the relative measurement error and showed that it is largest when using cortical thickness as a morphological measure. Using simulated data, we argue that cortical thickness is least reliable because of larger relative measurement errors. Practically, we make the following recommendations (1) combining subjects across sites into one group should be avoided, particularly if sites differ in image resolutions, subject demographics, or preprocessing steps; (2) surface area and volume should be preferred as morphological measures over cortical thickness; (3) a large number of subjects (n≫30 for the Desikan-Killiany parcellation) should be used to estimate structural covariance; (4) measurement error should be assessed where repeated measurements are available; (5) if combining sites is critical, univariate (per ROI) site-correction is insufficient, but error covariance (between ROIs) should be explicitly measured and modelled.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados , Adulto Joven
10.
PLoS One ; 15(2): e0228025, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32023272

RESUMEN

This paper presents a procedure for the patient-specific prediction of epileptic seizures. To this end, a combination of nonnegative matrix factorization (NMF) and smooth basis functions with robust regression is applied to power spectra of intracranial electroencephalographic (iEEG) signals. The resulting time and frequency components capture the dominant information from power spectra, while removing outliers and noise. This makes it possible to detect structure in preictal states, which is used for classification. Linear support vector machines (SVM) with L1 regularization are used to select and weigh the contributions from different number of not equally informative channels among patients. Due to class imbalance in data, synthetic minority over-sampling technique (SMOTE) is applied. The resulting method yields a computationally and conceptually simple, interpretable model of EEG signals of preictal and interictal states, which shows a good performance for the task of seizure prediction on two datasets (the EPILEPSIAE and on the public Epilepsyecosystem dataset).


Asunto(s)
Algoritmos , Convulsiones/diagnóstico , Adolescente , Adulto , Bases de Datos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Factores de Tiempo
11.
PLoS One ; 14(12): e0225838, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31851680

RESUMEN

In this paper, a simple yet interpretable, probabilistic model is proposed for the prediction of reported case counts of infectious diseases. A spatio-temporal kernel is derived from training data to capture the typical interaction effects of reported infections across time and space, which provides insight into the dynamics of the spread of infectious diseases. Testing the model on a one-week-ahead prediction task for campylobacteriosis and rotavirus infections across Germany, as well as Lyme borreliosis across the federal state of Bavaria, shows that the proposed model performs on-par with the state-of-the-art hhh4 model. However, it provides a full posterior distribution over parameters in addition to model predictions, which aides in the assessment of the model. The employed Bayesian Monte Carlo regression framework is easily extensible and allows for incorporating prior domain knowledge, which makes it suitable for use on limited, yet complex datasets as often encountered in epidemiology.


Asunto(s)
Infecciones por Campylobacter/epidemiología , Enfermedad de Lyme/epidemiología , Método de Montecarlo , Infecciones por Rotavirus/epidemiología , Teorema de Bayes , Alemania , Humanos , Cadenas de Markov , Modelos Estadísticos
12.
Front Psychol ; 10: 2415, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749736

RESUMEN

Self-driving cars have the potential to greatly improve public safety. However, their introduction onto public roads must overcome both ethical and technical challenges. To further understand the ethical issues of introducing self-driving cars, we conducted two moral judgement studies investigating potential differences in the moral norms applied to human drivers and self-driving cars. In the experiments, participants made judgements on a series of dilemma situations involving human drivers or self-driving cars. We manipulated which perspective situations were presented from in order to ascertain the effect of perspective on moral judgements. Two main findings were apparent from the results of the experiments. First, human drivers and self-driving cars were largely judged similarly. However, there was a stronger tendency to prefer self-driving cars to act in ways to minimize harm, compared to human drivers. Second, there was an indication that perspective influences judgements in some situations. Specifically, when considering situations from the perspective of a pedestrian, people preferred actions that would endanger car occupants instead of themselves. However, they did not show such a self-preservation tendency when the alternative was to endanger other pedestrians to save themselves. This effect was more prevalent for judgements on human drivers than self-driving cars. Overall, the results extend and agree with previous research, again contradicting existing ethical guidelines for self-driving car decision making and highlighting the difficulties with adapting public opinion to decision making algorithms.

13.
PLoS One ; 14(10): e0223108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31596864

RESUMEN

The question of how self-driving cars should behave in dilemma situations has recently attracted a lot of attention in science, media and society. A growing number of publications amass insight into the factors underlying the choices we make in such situations, often using forced-choice paradigms closely linked to the trolley dilemma. The methodology used to address these questions, however, varies widely between studies, ranging from fully immersive virtual reality settings to completely text-based surveys. In this paper we compare virtual reality and text-based assessments, analyzing the effect that different factors in the methodology have on decisions and emotional response of participants. We present two studies, comparing a total of six different conditions varying across three dimensions: The level of abstraction, the use of virtual reality, and time-constraints. Our results show that the moral decisions made in this context are not strongly influenced by the assessment, and the compared methods ultimately appear to measure very similar constructs. Furthermore, we add to the pool of evidence on the underlying factors of moral judgment in traffic dilemmas, both in terms of general preferences, i.e., features of the particular situation and potential victims, as well as in terms of individual differences between participants, such as their age and gender.


Asunto(s)
Toma de Decisiones , Principios Morales , Encuestas y Cuestionarios , Envío de Mensajes de Texto , Realidad Virtual , Anciano , Teorema de Bayes , Femenino , Humanos , Modelos Logísticos , Masculino , Deseabilidad Social , Juegos de Video
14.
Sci Eng Ethics ; 25(2): 399-418, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29357047

RESUMEN

Ethical thought experiments such as the trolley dilemma have been investigated extensively in the past, showing that humans act in utilitarian ways, trying to cause as little overall damage as possible. These trolley dilemmas have gained renewed attention over the past few years, especially due to the necessity of implementing moral decisions in autonomous driving vehicles (ADVs). We conducted a set of experiments in which participants experienced modified trolley dilemmas as drivers in virtual reality environments. Participants had to make decisions between driving in one of two lanes where different obstacles came into view. Eventually, the participants had to decide which of the objects they would crash into. Obstacles included a variety of human-like avatars of different ages and group sizes. Furthermore, the influence of sidewalks as potential safe harbors and a condition implicating self-sacrifice were tested. Results showed that participants, in general, decided in a utilitarian manner, sparing the highest number of avatars possible with a limited influence by the other variables. Derived from these findings, which are in line with the utilitarian approach in moral decision making, it will be argued for an obligatory ethics setting implemented in ADVs.


Asunto(s)
Inteligencia Artificial/ética , Automatización/ética , Conducción de Automóvil/psicología , Automóviles/ética , Toma de Decisiones/ética , Teoría Ética , Altruismo , Guías como Asunto , Humanos , Principios Morales , Realidad Virtual
16.
Front Behav Neurosci ; 12: 31, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29541023

RESUMEN

Autonomous vehicles, though having enormous potential, face a number of challenges. As a computer system interacting with society on a large scale and human beings in particular, they will encounter situations, which require moral assessment. What will count as right behavior in such situations depends on which factors are considered to be both morally justified and socially acceptable. In an empirical study we investigated what factors people recognize as relevant in driving situations. The study put subjects in several "dilemma" situations, which were designed to isolate different and potentially relevant factors. Subjects showed a surprisingly high willingness to sacrifice themselves to save others, took the age of potential victims in a crash into consideration and were willing to swerve onto a sidewalk if this saved more lives. The empirical insights are intended to provide a starting point for a discussion, ultimately yielding societal agreement whereby the empirical insights should be balanced with philosophical considerations.

17.
Neural Comput ; 30(4): 945-986, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29342400

RESUMEN

A neuronal population is a computational unit that receives a multivariate, time-varying input signal and creates a related multivariate output. These neural signals are modeled as stochastic processes that transmit information in real time, subject to stochastic noise. In a stationary environment, where the input signals can be characterized by constant statistical properties, the systematic relationship between its input and output processes determines the computation carried out by a population. When these statistical characteristics unexpectedly change, the population needs to adapt to its new environment if it is to maintain stable operation. Based on the general concept of homeostatic plasticity, we propose a simple compositional model of adaptive networks that achieve invariance with regard to undesired changes in the statistical properties of their input signals and maintain outputs with well-defined joint statistics. To achieve such invariance, the network model combines two functionally distinct types of plasticity. An abstract stochastic process neuron model implements a generalized form of intrinsic plasticity that adapts marginal statistics, relying only on mechanisms locally confined within each neuron and operating continuously in time, while a simple form of Hebbian synaptic plasticity operates on synaptic connections, thus shaping the interrelation between neurons as captured by a copula function. The combined effect of both mechanisms allows a neuron population to discover invariant representations of its inputs that remain stable under a wide range of transformations (e.g., shifting, scaling and (affine linear) mixing). The probabilistic model of homeostatic adaptation on a population level as presented here allows us to isolate and study the individual and the interaction dynamics of both mechanisms of plasticity and could guide the future search for computationally beneficial types of adaptation.

18.
Front Behav Neurosci ; 11: 122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725188

RESUMEN

Self-driving cars are posing a new challenge to our ethics. By using algorithms to make decisions in situations where harming humans is possible, probable, or even unavoidable, a self-driving car's ethical behavior comes pre-defined. Ad hoc decisions are made in milliseconds, but can be based on extensive research and debates. The same algorithms are also likely to be used in millions of cars at a time, increasing the impact of any inherent biases, and increasing the importance of getting it right. Previous research has shown that moral judgment and behavior are highly context-dependent, and comprehensive and nuanced models of the underlying cognitive processes are out of reach to date. Models of ethics for self-driving cars should thus aim to match human decisions made in the same context. We employed immersive virtual reality to assess ethical behavior in simulated road traffic scenarios, and used the collected data to train and evaluate a range of decision models. In the study, participants controlled a virtual car and had to choose which of two given obstacles they would sacrifice in order to spare the other. We randomly sampled obstacles from a variety of inanimate objects, animals and humans. Our model comparison shows that simple models based on one-dimensional value-of-life scales are suited to describe human ethical behavior in these situations. Furthermore, we examined the influence of severe time pressure on the decision-making process. We found that it decreases consistency in the decision patterns, thus providing an argument for algorithmic decision-making in road traffic. This study demonstrates the suitability of virtual reality for the assessment of ethical behavior in humans, delivering consistent results across subjects, while closely matching the experimental settings to the real world scenarios in question.

19.
Neural Comput ; 29(9): 2491-2510, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28599117

RESUMEN

Spike synchrony, which occurs in various cortical areas in response to specific perception, action, and memory tasks, has sparked a long-standing debate on the nature of temporal organization in cortex. One prominent view is that this type of synchrony facilitates the binding or grouping of separate stimulus components. We argue instead for a more general function: a measure of the prior probability of incoming stimuli, implemented by long-range, horizontal, intracortical connections. We show that networks of this kind-pulse-coupled excitatory spiking networks in a noisy environment-can provide a sufficient substrate for stimulus-dependent spike synchrony. This allows for a quick (few spikes) estimate of the match between inputs and the input history as encoded in the network structure. Given the ubiquity of small, strongly excitatory subnetworks in cortex, we thus propose that many experimental observations of spike synchrony can be viewed as signs of input patterns that resemble long-term experience-that is, of patterns with high prior probability.

20.
PLoS One ; 11(10): e0165170, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27783690

RESUMEN

Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Cómputos Matemáticos , Dinámicas no Lineales , Distribución Normal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...