Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 2325, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282038

RESUMEN

A novel virus emerged from Wuhan, China, at the end of 2019 and quickly evolved into a pandemic, significantly impacting various industries, especially healthcare. One critical lesson from COVID-19 is the importance of understanding and predicting underlying comorbidities to better prioritize care and pharmacological therapies. Factors like age, race, and comorbidity history are crucial in determining disease mortality. While clinical data from hospitals and cohorts have led to the identification of these comorbidities, traditional approaches often lack a mechanistic understanding of the connections between them. In response, we utilized a deep learning approach to integrate COVID-19 data with data from other diseases, aiming to detect comorbidities with mechanistic insights. Our modified algorithm in the mpDisNet package, based on word-embedding deep learning techniques, incorporates miRNA expression profiles from SARS-CoV-2 infected cell lines and their target transcription factors. This approach is aligned with the emerging field of network medicine, which seeks to define diseases based on distinct pathomechanisms rather than just phenotypes. The main aim is discovery of possible unknown comorbidities by connecting the diseases by their miRNA mediated regulatory interactions. The algorithm can predict the majority of COVID-19's known comorbidities, as well as several diseases that have yet to be discovered to be comorbid with COVID-19. These potentially comorbid diseases should be investigated further to raise awareness and prevention, as well as informing the comorbidity research for the next possible outbreak.


Asunto(s)
COVID-19 , MicroARNs , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Procesamiento de Lenguaje Natural , Comorbilidad , MicroARNs/genética
2.
NPJ Syst Biol Appl ; 9(1): 56, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37945567

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one the most aggressive cancers and characterized by a highly rigid and immunosuppressive tumor microenvironment (TME). The extensive cellular interactions are known to play key roles in the immune evasion, chemoresistance, and poor prognosis. Here, we used the spatial transcriptomics, scRNA-seq, and bulk RNA-seq datasets to enhance the insights obtained from each to decipher the cellular communication in the TME. The complex crosstalk in PDAC samples was revealed by the single-cell and spatial transcriptomics profiles of the samples. We show that tumor-associated macrophages (TAMs) are the central cell types in the regulation of microenvironment in PDAC. They colocalize with the cancer cells and tumor-suppressor immune cells and take roles to provide an immunosuppressive environment. LGALS9 gene which is upregulated in PDAC tumor samples in comparison to healthy samples was also found to be upregulated in TAMs compared to tumor-suppressor immune cells in cancer samples. Additionally, LGALS9 was found to be the primary component in the crosstalk between TAMs and the other cells. The widespread expression of P4HB gene and its interaction with LGALS9 was also notable. Our findings point to a profound role of TAMs via LGALS9 and its interaction with P4HB that should be considered for further elucidation as target in the combinatory immunotherapies for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Comunicación , Microambiente Tumoral/genética , Neoplasias Pancreáticas
3.
Mol Omics ; 19(2): 162-173, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36562244

RESUMEN

Spatially resolved transcriptomics technologies have drawn enormous attention by providing RNA expression patterns together with their spatial information. Even though improved techniques are being developed rapidly, the technologies which give spatially whole transcriptome level profiles suffer from dropout problems because of the low capture rate. Imputation of missing data is one strategy to eliminate this technical problem. We evaluated the imputation performance of five available methods (SpaGE, stPlus, gimVI, Tangram and stLearn) which were indicated as capable of making predictions for the dropouts in spatially resolved transcriptomics datasets. The evaluation was performed qualitatively via visualization of the predictions against the original values and quantitatively with Pearson's correlation coefficient, cosine similarity, root mean squared log-error, Silhouette Index and Calinski Harabasz Index. We found that stPlus and gimVI outperform the other three. However, the performance of all methods was lower than expected which indicates that there is still a gap for imputation tools dealing with dropout events in spatially resolved transcriptomics.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos
4.
Turk J Biol ; 47(6): 413-422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38681777

RESUMEN

Background/aim: Single-cell transcriptomics (scRNA-Seq) explores cellular diversity at the gene expression level. Due to the inherent sparsity and noise in scRNA-Seq data and the uncertainty on the types of sequenced cells, effective clustering and cell type annotation are essential. The graph-based clustering of scRNA-Seq data is a simple yet powerful approach that presents data as a "shared nearest neighbour" graph and clusters the cells using graph clustering algorithms. These algorithms are dependent on several user-defined parameters.Here we present SUMA, a lightweight tool that uses a random forest model to predict the optimum number of neighbours to obtain the optimum clustering results. Moreover, we integrated our method with other commonly used methods in an RShiny application. SUMA can be used in a local environment (https://github.com/hkarakurt8742/SUMA) or as a browser tool (https://hkarakurt.shinyapps.io/suma/). Materials and methods: Publicly available scRNA-Seq datasets and 3 different graph-based clustering algorithms were used to develop SUMA, and a large range for number of neighbours and variant genes was taken into consideration. The quality of clustering was assessed using the adjusted Rand index (ARI) and true labels of each dataset. The data were split into training and test datasets, and the model was built and optimised using Scikit-learn (Python) and randomForest (R) libraries. Results: The accuracy of our machine learning model was 0.96, while the AUC of the ROC curve was 0.98. The model indicated that the number of cells in scRNA-Seq data is the most important feature when deciding the number of neighbours. Conclusion: We developed and evaluated the SUMA model and implemented the method in the SUMAShiny app, which integrates SUMA with different clustering methods and enables nonbioinformatician users to cluster and visualise their scRNA data easily. The SUMAShiny app is available both for desktop and browser use.

5.
Integr Biol (Camb) ; 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241207

RESUMEN

Bipolar disorder (BP) is a lifelong psychiatric condition, which often disrupts the daily life of the patients. It is characterized by unstable and periodic mood changes, which cause patients to display unusual shifts in mood, energy, activity levels, concentration and the ability to carry out day-to-day tasks. BP is a major psychiatric condition, and it is still undertreated. The causes and neural mechanisms of bipolar disorder are unclear, and diagnosis is still mostly based on psychiatric examination, furthermore the unstable character of the disorder makes diagnosis challenging. Identification of the molecular mechanisms underlying the disease may improve the diagnosis and treatment rates. Single nucleotide polymorphisms (SNP) and transcriptome profiles of patients were studied along with signalling pathways that are thought to be associated with bipolar disorder. Here, we present a computational approach that uses publicly available transcriptome data from bipolar disorder patients and healthy controls. Along with statistical analyses, data are integrated with a genome-scale metabolic model and protein-protein interaction network. Healthy individuals and bipolar disorder patients are compared based on their metabolic profiles. We hypothesize that energy metabolism alterations in bipolar disorder relate to perturbations in amino-acid metabolism and neuron-astrocyte exchange reactions. Due to changes in amino acid metabolism, neurotransmitters and their secretion from neurons and metabolic exchange pathways between neurons and astrocytes such as the glutamine-glutamate cycle are also altered. Changes in negatively charged (-1) KIV and KMV molecules are also observed, and it indicates that charge balance in the brain is highly altered in bipolar disorder. Due to this fact, we also hypothesize that positively charged lithium ions may stabilize the disturbed charge balance in neurons in addition to its effects on neurotransmission. To the best of our knowledge, our approach is unique as it is the first study using genome-scale metabolic models in neuropsychiatric research.

6.
mSystems ; 7(3): e0134721, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35695574

RESUMEN

Saccharomyces cerevisiae undergoes robust oscillations to regulate its physiology for adaptation and survival under nutrient-limited conditions. Environmental cues can induce rhythmic metabolic alterations in order to facilitate the coordination of dynamic metabolic behaviors. Of such metabolic processes, the yeast metabolic cycle enables adaptation of the cells to varying nutritional status through oscillations in gene expression and metabolite production levels. In this process, yeast metabolism is altered between diverse cellular states based on changing oxygen consumption levels: quiescent (reductive charging [RC]), growth (oxidative [OX]), and proliferation (reductive building [RB]) phases. We characterized metabolic alterations during the yeast metabolic cycle using a variety of approaches. Gene expression levels are widely used for condition-specific metabolic simulations, whereas the use of epigenetic information in metabolic modeling is still limited despite the clear relationship between epigenetics and metabolism. This prompted us to investigate the contribution of epigenomic information to metabolic predictions for progression of the yeast metabolic cycle. In this regard, we determined altered pathways through the prediction of regulated reactions and corresponding model genes relying on differential chromatin accessibility levels. The predicted metabolic alterations were confirmed via data analysis and literature. We subsequently utilized RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data sets in the contextualization of the yeast model. The use of ATAC-seq data considerably enhanced the predictive capability of the model. To the best of our knowledge, this is the first attempt to use genome-wide chromatin accessibility data in metabolic modeling. The preliminary results showed that epigenomic data sets can pave the way for more accurate metabolic simulations. IMPORTANCE Dynamic chromatin organization mediates the emergence of condition-specific phenotypes in eukaryotic organisms. Saccharomyces cerevisiae can alter its metabolic profile via regulation of genome accessibility and robust transcriptional oscillations under nutrient-limited conditions. Thus, both epigenetic information and transcriptomic information are crucial in the understanding of condition-specific metabolic behavior in this organism. Based on genome-wide alterations in chromatin accessibility and transcription, we investigated the yeast metabolic cycle, which is a remarkable example of coordinated and dynamic yeast behavior. In this regard, we assessed the use of ATAC-seq and RNA-seq data sets in condition-specific metabolic modeling. To our knowledge, this is the first attempt to use chromatin accessibility data in the reconstruction of context-specific metabolic models, despite the extensive use of transcriptomic data. As a result of comparative analyses, we propose that the incorporation of epigenetic information is a promising approach in the accurate prediction of metabolic dynamics.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , ARN/metabolismo , RNA-Seq , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cromatina , Redes y Vías Metabólicas/genética
7.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893873

RESUMEN

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Enzimas/genética , ARN/genética , Ribonucleósidos/genética , Interfaz Usuario-Computador , Secuencia de Bases , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Gráficos por Computador , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Enzimas/metabolismo , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/patología , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/metabolismo , Enfermedades Hematológicas/patología , Humanos , Internet , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Trastornos Mentales/patología , Enfermedades Musculoesqueléticas/genética , Enfermedades Musculoesqueléticas/metabolismo , Enfermedades Musculoesqueléticas/patología , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleósidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Sci Rep ; 11(1): 15806, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349126

RESUMEN

Primary cancer cells exert unique capacity to disseminate and nestle in distant organs. Once seeded in secondary sites, cancer cells may enter a dormant state, becoming resistant to current treatment approaches, and they remain silent until they reactivate and cause overt metastases. To illuminate the complex mechanisms of cancer dormancy, 10 transcriptomic datasets from the literature enabling 21 dormancy-cancer comparisons were mapped on protein-protein interaction networks and gene-regulatory networks to extract subnetworks that are enriched in significantly deregulated genes. The genes appearing in the subnetworks and significantly upregulated in dormancy with respect to proliferative state were scored and filtered across all comparisons, leading to a dormancy-interaction network for the first time in the literature, which includes 139 genes and 1974 interactions. The dormancy interaction network will contribute to the elucidation of cellular mechanisms orchestrating cancer dormancy, paving the way for improvements in the diagnosis and treatment of metastatic cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias/genética , Lesiones Precancerosas/genética , Transcriptoma , Animales , Biomarcadores de Tumor/metabolismo , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología
9.
RNA ; 27(4): 367-389, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33376192

RESUMEN

RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.


Asunto(s)
Enfermedades Metabólicas/genética , Neoplasias/genética , Enfermedades del Sistema Nervioso/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN no Traducido/genética , Apoptosis/genética , Ciclo Celular/genética , Epigénesis Genética , Marcadores Genéticos , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo
10.
NAR Genom Bioinform ; 2(3): lqaa052, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32766548

RESUMEN

In the last decade, single cell RNAseq (scRNAseq) datasets have grown in size from a single cell to millions of cells. Due to its high dimensionality, it is not always feasible to visualize scRNAseq data and share it in a scientific report or an article publication format. Recently, many interactive analysis and visualization tools have been developed to address this issue and facilitate knowledge transfer in the scientific community. In this study, we review several of the currently available scRNAseq visualization tools and benchmark the subset that allows to visualize the data on the web and share it with others. We consider the memory and time required to prepare datasets for sharing as the number of cells increases, and additionally review the user experience and features available in the web interface. To address the problem of format compatibility we have also developed a user-friendly R package, sceasy, which allows users to convert their own scRNAseq datasets into a specific data format for visualization.

11.
Turk J Biol ; 44(3): 168-177, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595353

RESUMEN

A novel coronavirus (SARS-CoV-2, formerly known as nCoV-2019) that causes an acute respiratory disease has emerged in Wuhan, China and spread globally in early 2020. On January the 30th, the World Health Organization (WHO) declared spread of this virus as an epidemic and a public health emergency. With its highly contagious characteristic and long incubation time, confinement of SARS-CoV-2 requires drastic lock-down measures to be taken and therefore early diagnosis is crucial. We analysed transcriptome of SARS-CoV-2 infected human lung epithelial cells, compared it with mock-infected cells, used network-based reporter metabolite approach and integrated the transcriptome data with protein-protein interaction network to elucidate the early cellular response. Significantly affected metabolites have the potential to be used in diagnostics while pathways of protein clusters have the potential to be used as targets for supportive or novel therapeutic approaches. Our results are in accordance with the literature on response of IL6 family of cytokines and their importance, in addition, we find that matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) with keratan sulfate synthesis pathway may play a key role in the infection. We hypothesize that MMP9 inhibitors have potential to prevent "cytokine storm" in severely affected patients.

12.
Methods Mol Biol ; 2049: 347-363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602621

RESUMEN

Genome-scale modelling in eukaryotes has been pioneered by the yeast Saccharomyces cerevisiae. Early metabolic networks have been reconstructed based on genome sequence and information accumulated in the literature on biochemical reactions. Protein-protein interaction networks have been constructed based on experimental observations such as yeast-2-hybrid method. Gene regulatory networks were based on a variety of data types, including information on TF-promoter binding and gene coexpression. The aforementioned networks have been improved gradually, and methods for their integration were developed. Incorporation of omics data including genomics, metabolomics, transcriptomics, fluxome, and phosphoproteome led to next-generation genome-scale models. The methods tested on yeast have later been implemented in human, further, cellular components found to be important in yeast physiology under (ab)normal conditions, and (dis)regulation mechanisms in yeast shed light to the healthy and disease states in human. This chapter provides a historical perspective on next-generation genome-scale models incorporating multilevel 'omics data, from yeast to human.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Saccharomyces cerevisiae/metabolismo , Biología Computacional , Redes Reguladoras de Genes , Humanos , Metabolómica , Unión Proteica , Biología de Sistemas
13.
RNA Biol ; 15(6): 829-831, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29671387

RESUMEN

The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.


Asunto(s)
ADN de Neoplasias , Epigénesis Genética , Epigenómica/normas , Perfilación de la Expresión Génica/normas , Regulación Neoplásica de la Expresión Génica , Neoplasias , ARN Neoplásico , Transcriptoma , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Europa (Continente) , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo
14.
Mol Cell ; 68(3): 566-580.e10, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056325

RESUMEN

The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.


Asunto(s)
Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositoles/metabolismo , Neoplasias de la Próstata/enzimología , Sistemas de Mensajero Secundario , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo
15.
IEEE Trans Biomed Eng ; 63(10): 2007-14, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27305665

RESUMEN

OBJECTIVE: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. METHODS: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. RESULTS: Our analysis revealed several challenges to representing WC models using the current standards. CONCLUSION: We, therefore, propose several new WC modeling standards, software, and databases. SIGNIFICANCE: We anticipate that these new standards and software will enable more comprehensive models.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Programas Informáticos , Biología de Sistemas/normas , Biología Computacional , Técnicas Citológicas , Femenino , Humanos , Masculino , Biología de Sistemas/educación , Biología de Sistemas/organización & administración
16.
Methods Mol Biol ; 1386: 331-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26677190

RESUMEN

Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery.


Asunto(s)
Modelos Teóricos , Células Madre Pluripotentes , Medicina Regenerativa , Trasplante de Células Madre , Animales , Biología Computacional/métodos , Humanos , Modelos Biológicos , Medicina Regenerativa/métodos , Reproducibilidad de los Resultados , Trasplante de Células Madre/métodos
17.
Trends Biotechnol ; 33(4): 237-46, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25746161

RESUMEN

Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering.


Asunto(s)
Biotecnología , Proteínas de Transporte de Membrana , Ingeniería Metabólica , Ingeniería de Proteínas , Biología Sintética , Fermentación , Perfilación de la Expresión Génica
18.
Mol Biosyst ; 10(1): 93-102, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24157722

RESUMEN

Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Unión al ADN/genética , Resistencia a Múltiples Medicamentos/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/biosíntesis , Glucosa/metabolismo , Glicerol/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Metaboloma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética
19.
BMC Genomics ; 14: 744, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24176122

RESUMEN

BACKGROUND: In the model eukaryote, Saccharomyces cerevisiae, previous experiments have identified those genes that exert the most significant control over cell growth rate. These genes are termed HFC for high flux control. Such genes are overrepresented within pathways controlling the mitotic cell cycle. RESULTS: We postulated that the increase/decrease in growth rate is due to a change in the rate of progression through specific cell cycle steps. We extended and further developed an existing logical model of the yeast cell cycle in order elucidate how the HFC genes modulated progress through the cycle. This model can simulate gene dosage-variation and calculate the cycle time, determine the order and relative speed at which events occur, and predict arrests and failures to correctly execute a step. To experimentally test our model's predictions, we constructed a tetraploid series of deletion mutants for a set of eight genes that control the G2/M transition. This system allowed us to vary gene copy number through more intermediate levels than previous studies and examine the impact of copy-number variation on growth, cell-cycle phenotype, and response to different cellular stresses. CONCLUSIONS: For the majority of strains, the predictions agreed with experimental observations, validating our model and its use for further predictions. Where simulation and experiment diverged, we uncovered both novel tetraploid-specific phenotypes and a switch in the determinative execution point of a key cell-cycle regulator, the Cdc28 kinase, from the G1/S to the S/G2 boundaries.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Saccharomyces cerevisiae/genética , Antígenos CD28/deficiencia , Antígenos CD28/genética , Antígenos CD28/metabolismo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Ciclina B/deficiencia , Ciclina B/genética , Ciclina B/metabolismo , Fase G2 , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Teóricos , Fenotipo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/deficiencia , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetraploidía
20.
Biotechnol J ; 8(9): 1017-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24031036

RESUMEN

There is an increasing use of systems biology approaches in both "red" and "white" biotechnology in order to enable medical, medicinal, and industrial applications. The intricate links between genotype and phenotype may be explained through the use of the tools developed in systems biology, synthetic biology, and evolutionary engineering. Biomedical and biotechnological research are among the fields that could benefit most from the elucidation of this complex relationship. Researchers have studied fitness extensively to explain the phenotypic impacts of genetic variations. This elaborate network of dependencies and relationships so revealed are further complicated by the influence of environmental effects that present major challenges to our achieving an understanding of the cellular mechanisms leading to healthy or diseased phenotypes or optimized production yields. An improved comprehension of complex genotype-phenotype interactions and their accurate prediction should enable us to more effectively engineer yeast as a cell factory and to use it as a living model of human or pathogen cells in intelligent screens for new drugs. This review presents different methods and approaches undertaken toward improving our understanding and prediction of the growth phenotype of the yeast Saccharomyces cerevisiae as both a model and a production organism.


Asunto(s)
Ingeniería Genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Evolución Biológica , Biotecnología , Biología Computacional , Fermentación , Dosificación de Gen , Genes Esenciales , Genes Fúngicos , Ingeniería Genética/métodos , Aptitud Genética , Genotipo , Humanos , Modelos Biológicos , Fenotipo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...