Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 893: 164782, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321502

RESUMEN

Protected areas (PAs) are crucial in conserving biodiversity under climate change. In boreal regions, trends of biologically relevant climate variables (i.e., bioclimate) in PAs have remained unquantified. We investigated the changes and variability of 11 key bioclimatic variables across Finland during the period 1961-2020 based on gridded climatology. Our results suggest significant changes in annual mean and growing season temperatures over the entire study area, whereas, e.g., annual precipitation sum and April-September water balance have increased especially in the central and northern parts of Finland. We found substantial variation in bioclimatic changes over the 631 studied PAs; in the northern boreal zone (NB) the number of snow-covered days has decreased on average by 5.9 days between 1961-1990 and 1991-2020, while in the southern boreal zone (SB) the corresponding decrease has been 16.1 days. The number of frost days in spring with absent snow cover has decreased in the NB (on average -0.9 days) while increasing in the SB (0.5 days), reflecting the changing exposure of biota to frost. The observed increases in accumulation of heat in the SB and more frequent rain-on-snow events in the NB can affect drought tolerance and winter survival of species, respectively. Principal component analysis suggested that the main dimensions of bioclimate change in PAs vary across vegetation zones; for example, in the SB the changes are related to annual and growing season temperatures, whereas in the middle boreal zone the changes are linked to altered moisture and snow conditions. Our results highlight the substantial spatial variation in bioclimatic trends and climate vulnerability across the PAs and vegetation zones. These findings provide a basis for the understanding of the multifaceted changes the boreal PA network is facing and help to develop and direct conservation and management.


Asunto(s)
Biodiversidad , Cambio Climático , Finlandia , Estaciones del Año , Nieve
2.
Viruses ; 15(3)2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36992301

RESUMEN

The West Nile Virus (WNV) and Sindbis virus (SINV) are avian-hosted mosquito-borne zoonotic viruses that co-circulate in some geographical areas and share vector species such as Culex pipiens and Culex torrentium. These are widespread in Europe, including northern parts and Finland, where SINV is endemic, but WNV is currently not. As WNV is spreading northwards in Europe, we wanted to assess the experimental vector competence of Finnish Culex pipiens and Culex torrentium mosquitoes to WNV and SINV in different temperature profiles. Both mosquito species were found susceptible to both viruses and got infected via infectious blood meal at a mean temperature of 18 °C. WNV-positive saliva was detected at a mean temperature of 24 °C, whereas SINV-positive saliva was detected already at a mean temperature of 18 °C. Cx. torrentium was found to be a more efficient vector for WNV and SINV over Cx. pipiens. Overall, the results were in line with the previous studies performed with more southern vector populations. The current climate does not seem optimal for WNV circulation in Finland, but temporary summertime transmission could occur in the future if all other essential factors are in place. More field data would be needed for monitoring and understanding the northward spreading of WNV in Europe.


Asunto(s)
Culex , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Virus Sindbis , Mosquitos Vectores , Europa (Continente)/epidemiología
3.
PLoS One ; 9(11): e111340, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25383552

RESUMEN

Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome - more than ten million km2- important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo.


Asunto(s)
Ecosistema , Bosques , Calentamiento Global/historia , Árboles/crecimiento & desarrollo , Dióxido de Carbono/análisis , Finlandia , Geografía , Historia del Siglo XX , Historia del Siglo XXI , Análisis de Regresión , Tiempo (Meteorología)
4.
Int J Biometeorol ; 53(2): 167-75, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19101735

RESUMEN

Seasonal patterns of death from suicide are well-documented and have been attributed to climatic factors such as solar radiation and ambient temperature. However, studies on the impact of weather and climate on suicide are not consistent, and conflicting data have been reported. In this study, we performed a correlation analysis between nationwide suicide rates and weather variables in Finland during the period 1971-2003. The weather parameters studied were global solar radiation, temperature and precipitation, and a range of time spans from 1 month to 1 year were used in order to elucidate the dose-response relationship, if any, between weather variables and suicide. Single and multiple linear regression models show weak associations using 1-month and 3-month time spans, but robust associations using a 12-month time span. Cumulative global solar radiation had the best explanatory power, while average temperature and cumulative precipitation had only a minor impact on suicide rates. Our results demonstrate that winters with low global radiation may increase the risk of suicide. The best correlation found was for the 5-month period from November to March; the inter-annual variability in the cumulative global radiation for that period explained 40 % of the variation in the male suicide rate and 14 % of the variation in the female suicide rate, both at a statistically significant level. Long-term variations in global radiation may also explain, in part, the observed increasing trend in the suicide rate until 1990 and the decreasing trend since then in Finland.


Asunto(s)
Clima , Suicidio/estadística & datos numéricos , Adolescente , Adulto , Femenino , Finlandia/epidemiología , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Estaciones del Año , Luz Solar , Tiempo (Meteorología) , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...